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Supplementary Note 1. MODELS

In this section we define the models which we analyze.
Semimetals in an incommensurate scalar potential. The tight-binding Hamiltonians of models dubbed “perfect”

spin orbit coupling (SOC) are given by

T̂SOC =
∑
r,µ

[
it

2
c†rσµcr+µ̂ + h.c.], (1)

V̂SOC = W
∑
r,µ

cos(Qrµ + φµ)c†rcr, (2)

where t is the hopping matrix element, σµ are the Pauli matrices, cr are electron annihilation operators, Q is our
quasiperiodic wave vector, φµ are the offsets of the origin of the potential, and W is the amplitude of the quasiperiodic
potential. In the two-dimensional (2D) case µ = x, y and in the three-dimensional (3D) case µ = x, y, z and r takes
values in the set of all lattice points on a square (cubic) lattice. The Hamiltonian for the π-flux model has the same
potential term in 2D. The hopping term is modified as follows

T̂π = −t
∑

r,µ=x,y

[c†re
iAµ(r)cr+µ̂ + h.c.], (3)

where we choose the gauge with Ax(r) = π/2 for all sites r on the square lattice, and Ay(r) = −(−1)rxπ/2. For the
chosen gauge, periodic boundary conditions require the lattice size in x direction to be even.

The spinless honeycomb (HC) lattice model is given by a Hamiltonian of the form

T̂HC = −t
∑
rA,i

[c†A(rA)cB(rA + di) + h.c.], (4)

V̂HC = W
∑
r,δµ

cos(Qr · δµ + φµ)c†rcr. (5)

The sum over rA is over one of the two sub-lattices, while r is over all points. The index i labels the three nearest
neighbors of rA, and di is the vector from rA to its nearest neighbor i. The vectors δµ are a choice of each particular

model and for numerics we choose δ1 = d1 = (2/3)x̂ and δ2 = d2 = −(1/3)x̂ + (1/
√

3)ŷ. The kinetic part of the
Hamiltonian for the one dimensional model with power law disperion1 is given in momentum space

T̂1D = −t
∑
k

sgn[cos(k)]| cos(k)|σc†kck. (6)

We assume σ < 1, this expression can be readily Fourier transformed to a tight binding model with long range hopping
(LRH). This yields a hopping amplitude

tij ∼ −2t[1− (−1)|i−j|] sin[π(|i− j| − σ)/2]Γ(1 + σ)|i− j|−(1+σ) (7)
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for |i− j| � 1 and Γ(x) is the Gamma function. The potential is

V̂1D = W
∑
r

cos(Qr + φ)c†rcr. (8)

Chiral Twisted Bilayer Graphene. The model we use for twisted bilayer graphene simulates the chiral version of
the continuum model2–4.

To write down the full model, we have first that

T̂cTBG = −t
∑
a=1,2

∑
〈ij〉

c†a,rica,rj , (9)

where 〈ij〉 indicates nearest neighbors on the honeycomb lattice and a labels the two layers. This model has four
Dirac nodes: two per layer. Furthermore, for reporting figures, we take t = 2.8 eV as it is for graphene.

We then couple the two layers with a quasiperiodically modulated tunnelling to simulate the effect of twisting

V̂cTBG = W
∑
r

∑
j

{
(c†1,A,r+ηj

c2,B,r + c†1,B,rc2,A,r+ηj ) cos[qj · (r + ηj/2) + φj ]

− 1

3
√

3

6∑
n=1

(−1)n(c†1,A,r+ηj+an
c2,B,r + c†1,B,rc2,A,r+ηj+an) sin[qj · (r + (ηj + aj)/2) + φj ]

}
+ h.c., (10)

where r is on the triangular Bravais lattice and ηj describe the vectors to connect nearest neighbors (B sites to A
sites) and they are given by

η1 = (0, 1),

η2 = (−
√

3/2,−1/2),

η3 = (
√

3/2, 1/2).

(11)

The vectors aj are the six nearest neighbors on the triangular lattice defined by a1 = η1 − η2, a2 = η1 − η3,
a3 = a2 − a1, a4 = −a1, a5 = −a2, and a6 = a1 − a2. Last, qj are defined by the twist angle

q1 = kθ(0,−1),

q2 = kθ(
√

3/2, 1/2),

q3 = kθ(−
√

3/2, 1/2),

(12)

where kθ = 2kD sin(θ/2) for twist angle θ and kD = 4π/(3
√

3) is the distance from the Γ point to K point.
To show how this reproduces the chiral model of twisted bilayer graphene, we can rewrite the above in k-space

V̂cTBG = W
∑
k

[
c†
1,k+

q1
2

σxc2,k− q1
2
eiφ1 + c†

1,k+
q2
2

(e−ik·a1σ+ + eik·a1σ−)c2,k− q2
2
eiφ2

+c†
1,k+

q3
2

(e−ik·a2σ+ + eik·a2σ−)c2,k− q3
2
eiφ3

]
f(−k) + w

∑
k

[
c†
1,k− q1

2

σxc2,k+
q1
2
e−iφ1

+c†
1,k− q2

2

(e−ik·a1σ+ + eik·a1σ−)c2,k+
q2
2
e−iφ2 + c†

1,k− q3
2

(e−ik·a2σ+ + eik·a2σ−)c2,k+
q3
2
e−iφ3

]
f(k), (13)

where ca,k = (caAk, caBk)T with a labeling the layer, A and B labeling the sublattice, and k is the lattice wave vector.
The function f is real-valued and has the form

f(k) =
1

2
+

1

6i
√

3

6∑
n=1

(−1)ne−ik·an . (14)

If we then concentrate near the K or K′ points (K = (− 4π
3
√

3
, 0) and K′ = ( 4π

3
√

3
, 0)), we have f(K) = 1 and f(K′) = 0.

Furthermore, K · a1 = −2π/3, K · a2 = 2π/3, K′ · a1 = 2π/3, and K′ · a2 = −2π/3. The result is that

V̂cTBG|near K ≈W
∑
k

∑
j

c†
1,k− qj

2

Tjc2,k+
qj
2
e−iφj , (15)
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Supplementary Figure 1: (left) Comparison of density of states ρ(E) of the lattice and continuum models at
W = 0.5 eV at an angle θ ≈ 8.958◦ approximated by taking the fraction kθ = 4π

3
11
122 , we see excellent agreement in

the miniband itself, and expected disagreement for higher energy bands beginning with the gap from miniband.
(right) Comparison of density of states near the critical value of W for the angle θ ≈ 8.958◦. For the lattice model
we observe this to happen for Wc ≈ 0.875 eV while for the continuum model we know this occurs at 0.930 eV. The
lattice model and the continuum model do not match at high energy, which results in a modified value of the critical
value of W . We see that the band is quite flat in either case, and just as in the W = 0.5 eV case, the higher bands
are at slightly different energies.

with

T1 = σx,

T2 = e2πi/3σ+ + e−2πi/3σ−,

T3 = e−2πi/3σ+ + e2πi/3σ−.

(16)

This exactly describes the continuum model as described in Refs.2,4 with AA tunnelling set to zero (the chiral limit).
If we also look at K′ we find that we obtain the same low-energy model up to a unitary transformation.

Importantly, this model has C3 symmetry in addition to C2 symmetry and T (time reversal). These symmetries
are contingent on eiφ1+iφ2+iφ3 = 1 (these phases pick an origin of rotation for the symmetry being applied), but are
otherwise built into the model.

To test our model against the continuum model, we now compare the density of states. In the continuum model,
there is one parameter that controls the physics α = W/(vkθ) where W is the tunneling strength between layers,
v = 3

2 t is the Fermi velocity. Therefore, the continuum model has the same physics at θ = 1.05◦ as for larger angles
such as θ = 8.958◦ as we are considering. At larger angles, the continuum model as an approximation for twisted
bilayer graphene breaks down due to effects such as band curvature, and the same is true of the lattice model in
this section, but we can observe density of state comparisons to see how the well the lattice model is capturing the
continuum model as a low-energy approximation. The results are in Supplementary Figure 1 and we see that the
miniband is captured quite accurately.

In order to simulate this system on finite sizes with periodic boundary conditions, we find that we need kθ = 4π
3
n
L

for integer n and system size L (for L2 Bravais lattice sites). Then, in order to fully capture an irrational number,
such as kθ = 4π

3
1
ϕ5 for the golden ratio ϕ, we can use the continued fraction expansion defined such that

[a0; a1, a2, . . .] = a0 +
1

a1 + 1
a2+···

, (17)

if we truncate this such that for instance, [a0; a1, a2,m] with 0 < m ≤ a3, we get a rational that approximates the
irrational number (m = a3 being quite a good approximation). Writing [a0; a1, a2,m] = n

L for integers n,L gives us

a system size L at which to simulate our system. For example, 1/ϕ5 = [0; 11, 11, 11, . . .] and we have [0; 11, 11] = 11
122

while [0; 11, 11, 3] = 34
377 (approximates of our irrational number for system sizes L = 122 and L = 377 respectively).
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Supplementary Note 2. STRUCTURE OF THE SPECTRUM AND SCALING OF THE DENSITY OF
STATES

In this section we discuss the numerical method used in the analysis of the spectrum and the finite size effects of the
method. We use the kernel polynomial method (KPM) to calculate the density of states ρ(E), which expands ρ(E)
in terms of Chebyshev polynomials up to an order Nc, and we use the Jackson kernel to filter out Gibbs oscillations
due to the finite expansion order. To determine the velocity v, in two-dimensions for example, we fit the low-|E|
asymptote ρ(E) ≈ ρ′(E = 0)|E| to extract ρ′(E = 0) ∼ 1/v2. Note that in 2D formally ρ′(E = 0) is not just a
single derivate due to the |E| scaling, but we use this notation to unify 2D and 3D; the latter it is simply a second
derivative. For details on the KPM technique see Ref. 5. We use twisted boundary conditions and we average over
random twists to reduce finite size effects. Now we discuss the effect of finite lattice size L and finite cutoff Nc on
ρ(E = 0) and ρ′(E = 0).

As an exemplary case we present results here for the “perfect” SOC and the cTBG models defined in the main
text. Results on the other models are similar and we also present results on the 1D model below. Supplementary
Figure 2 for the 2D SOC illustrates the dependence on L and Nc. For smaller Nc such as Nc = 212 = 4096, ρ′(0) for
all choice of L ≥ 55 almost overlap for W ≤ 0.515. For Nc = 214 = 16384, the ρ′(0) data converges as a function
of L only for L ≥ 144. Still, the L convergence is only valid for W ≤ 0.515. This demonstrates that the observed
convergence in L is strongly dependent on NC and therefore requires studying the scaling in NC for fixed L. In
Supplementary Figure 3(bottom row) we summarize similar features for cTBG showing Dirac nodes before and after
the “magic-angle” and within the metallic phase.

When fixing L and varying Nc, the semimetal-to-metal transition becomes sharper as ρ(E = 0) rises more abruptly
approaching a sharp step as shown in Supplementary Figure 2. This sharpening allows us to pinpoint the location of
the transitions accurately, in this case we find Wc = 0.525 ± 0.005 and W ′c = 0.551 ± 0.005. Importantly, the peak
of ρ(0) does not shrink as we vary L or Nc, providing strong evidence of the presence of the intermediate metallic
phase. In addition, we find that ρ′(0) does not saturate as we increase the expansion order, indicating within our
numerical accuracy that at the transition ρ′(0) diverges, similar to what was found in 3D6. From the above data of
ρ′(0) we determine the scaling exponent β defined by ρ′(0) ∼ |Wc −W |−β . We use ρ′(0) data obtained for Nc = 214

and L = 144 and we extract β from a log-log fit of 1/ρ′(0) versus |W −Wc|, see Supplementary Figure 4.

Dispersion and velocity. Here we demonstrate the identification of the kinetic velocity as obtained from the twist
dispersion with the parameter entering the low-energy asymptote of the DOS. We also compare these numerical
results with perturbation theory. We implement twisted boundary conditions by including a factor eiθ·r/L for each
real space field located at r and twist vector θ. Each component of θ takes value in (0, 2π) and we compute the energy
eigenstates E(θ) using exact diagonalization for various values of the twist θ. Such a change of boundary condition
has no effect on the bulk physics, but effectively moves the origin of the finite size induced momentum grid, so that
plotting the spectrum as a function of the twist shows a projection of the dispersion onto 1/Lth of the Brillouin
zone. Supplementary Figure 5 shows the twist dispersion for various models in one, two, and three dimensions, which
clearly demonstrates the dramatic flattening of the bands at the transition. These results where obtained for system
size L = 233 in 1D, L = 144 in 2D, and L = 21 in 3D. Using the twist dispersion we can estimate the velocity by
fitting the lowest energy band near 0 twist to a straight line. We compare the velocity as calculated from the twist
dispersion with the KPM result of the DOS and fourth order perturbation theory in Supplementary Figure 6, which
all agree well.

1D powerlaw hopping model. The parameter σ defined in equation (6) determines the behavior of the dispersion
relation near k = 0. This can be seen directly from the twist dispersion in Supplementary Figure 5. We present
detailed results for the 1D LRH model in Supplementary Figure 7. The DOS depends on σ by ρ(E) ∼ |E|1/σ−1

(Ref. 7), which is demonstrated in Supplementary Figure 7. In the following we present detailed results for σ = 1/3
and leave the full exploration of this 1D model for future work. Focusing on σ = 1/3 is numerically advantageous
since as we approach the transition the scaling ρ(E) ∼ |W −Wc|−β |E|2 allows us to use the second derivative of the
DOS ρ′′(0) to estimate β and we can compute ρ′′(0) accurately using the KPM. Notice that the power-law remains
constant when varying W in the semimetal phase, showing the 1D model is also stable to a weak quasiperiodic
potential. Upon approaching the transition we find ρ′′(0) displays a clear divergence with no sign of saturation as we
increase the expansion order (see Supplementary Figure 7), similar to the 2D model we have discussed above. We
find Wc = 2.05± 0.03 and from the power-law scaling ρ′′(0) ∼ |W −Wc|−β we extract β = 4.0± 0.8 for σ = 1/3, see
Supplementary Figure 4. Distinct from our results in 2D and 3D the transition in the 1D model is accompanied by
real space localization. To demonstrate this we calculate the IPR in real space and momentum space at zero energy.
The real space IPR becomes finite and momentum space IPR vanishes near the critical Wc. In addition, when the
momentum space IPR goes to zero the DOS becomes non-zero demonstrating that the generation of DOS is tied with
momentum space delocalization, similar to the higher dimensional models.
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Supplementary Figure 2: The DOS ρ(E = 0) and its derivative ρ′(E = 0) for 2D perfect SOC with Q = 2πFn−2/Fn
at various L and Nc near the semimetal-to-metal transition Wc = 0.525± 0.005 and back to the reentrant semimetal
W ′c = 0.551± 0.005. Top and middle left: Nc = 4096 varying L. Top and middle right: Nc = 16384 varying L. The
key is shared across the top four figures. Bottom: L = 233, varying Nc, with a shared key across the two. The insets
are the same plots with linear scale.

Supplementary Note 3. ANALYTIC RESULTS

This supplementary note is devoted to the summary of details on analytical arguments presented in the main text.

Perturbative calculation of velocity renormalization. We present the perturbative calculation of velocity renormal-
ization using the language of retarded Green’s functions,

Ĝ0(E) = [E + iη − T̂ ]−1, Ĝ(E) = [E + iη − T̂ − V̂ ]−1, (18a)

and are interested in diagonal components Gk,k′ with k = k′, only (e.g. for the DOS we only need ρ(E) =
−(1/π)Im

∑
k TrGk,k(E)). We define the self energy at momentum k by all diagrams which are G0(k, E) irreducible
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Supplementary Figure 3: The DOS (left and middle) ρ(E = 0) and its derivative (right) ρ′(E = 0) for cTBG at
kθ = 2πFn−5/Fn for different system sizes (left) and for different KPM expansion orders for L = Fn = 233 at various
Nc (middle and right) near the semimetal-to-metal transition Wc = 0.8725± 0.001 and back to the reentrant
semimetal W ′c = 0.892± 0.002.

10-2 10-1 100

|W-Wc|

10-10

10-5

100

1/ '(0), SOC
1/ '(0), honeycomb
1/ '(0), TBG
1/ ''(0), 1D LRH

2D SOC

2D  flu
x

cTBG

honeycomb

3D SOC
0

1

2

3

4

Supplementary Figure 4: Estimate of the scaling exponent β. Left: Extracting β from fitting (dashed lines) 1/ρ′(0)
in 2D and 1/ρ′′(0) in 1D for σ = 1/3 versus |W −Wc| on a log-log plot displaying a clear power law. For clarity we
have shifted the data of the honeycomb (HC) model so that it doesn’t overlap with the cTBG model. Right: β
estimate for the models we investigated in this paper, note that the estimate of β for the 3D Weyl model quotes the
result from Ref.6 and for the 1D long range hopping model we find β = 4± 0.8 for σ = 1/3.

and write

Gk,k(E) = [G0(k, E)−1 − Σ(k, E)]−1. (18b)

We expand about a given node Ki of the dispersion T (Ki+p) ' T (Ki)+h(Ki)(p) to leading order in p� 1/a. For
models which satisfy the symmetry constraints exposed in the main text (see also Supplementary Note Supplementary
Note 3) Σ(Ki + p, E) = EΣE + h(p)Σp to leading order in E, p. Henceforth, we choose the energy offset such that
T (K) = 0. Then,

Gk,k(E) = Z[E − (v/v0)h(k)]−1 with Z−1 = 1− ΣE and v/v0 = (1 + Σp)Z. (19)

In this section we evaluate the self energy to leading and, for some models, next to leading order in powers of W
and summarize them in Supplementary Table 1. A discussion of infinite order perturbation theory can be found at
the end of this note.

To illustrate the procedure we analyze the model of 2D perfect SOC for which the states at small k with Hamiltonian
H(k) = t(sin(kx)σx + sin(ky)σy) ' tk · σ are connected to the states at k ± Qêx,y and therefore to leading order
perturbation theory

Σ(2)(k) = (W/2)2
∑
±

1

E −H(k±Qêx)
+ x↔ y ' −E4α2 − tk · σ(2α2(1− cos(Q)) (20)
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Supplementary Figure 5: Twist dispersion for various models displaying the characteristic magic angle feature of flat
bands. All results shown except for the second and last rows (honeycomb model and cTBG respectively) are on the
twist trajectory θy = 0, and for 3D θz = 0. Whereas for the honeycomb model and cTBG, θy = −θx (going through
high symmetry points as displayed in the last row). First row: 3D SOC model investigated in Ref. 6 with
Q = 2πFn−2/L, L = 21, W = 0.1, 0.384, 0.5 corresponding to before the transition, in the metallic phase and after
the transition. Second row: 2D honeycomb model at Q = 2πFn−3/L, L = 144, W = 0.8, 1.0, 1.08 representing the
states well before the transition, right before the transition, and a flattened band. Third row: 2D SOC model at
Q = 2πFn−2/L, L = 144, W = 0.35, 0.54, 0.8 depicting states before the transition, in the metallic phase and after
the transition. We have numerically checked that the twist dispersion of the π-flux model coincides with the 2D
SOC, see the arguments exposed in Supplementary Figure 8, below. Fourth row: 1D power law hopping model at
Q = 2πFn−3/L, σ = 1/3, L = 1597, W = 0.5, 1.7, 2.051 of states well before the transition, the formation of a
miniband, and a flattened band. Last row: 2D cTBG model at kθ = 4π/3× 21/L, L = 233, W = 0.8, 0.876, 0.9 for
states before the magic-angle, at the magic-angle, and after the magic-angle respectively.
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Supplementary Figure 7: Results for the long-range hopping model with Q/2π = Fn−3/Fn. Top left: Density of
states ρ(E) as a function of E on a log-log scale calculated using KPM at L = 1597, with an Nc = 4096 with W = 0.
By varying σ the power-law decreases following ρ(E) ∼ |E|1/σ−1. Top middle: Fixed σ = 1/3 and varying W , when
W is small, the power law is well preserved. As the model approaches the transition the power law regime is pushed
to lower and lower energy due to the formation of minibands. The solid line represent actual data, and dashed lines
are fits to the expected form ρ(E) ∼ |E|1/σ−1 = E2. To accurately extract the scaling of the prefactor of the DOS,
i.e. ρ(E) ∼ |W −Wc|−β |E|1/σ−1, we turn to the second derivative of ρ(E). Top right: The second derivative ρ′′(0)
as a function of W for various NC with L = 28657 displaying a clear divergence as the transition is approached,
signifying the DOS is becoming non-analytic. As shown in Supplementary Figure 4, we find ρ′′(0) diverges with
|W −Wc| in a power law fashion. To avoid the issues involved with fitting, that we find are most severe in this 1D
model we use ρ′′(0) computed directly with the KPM. Bottom left and middle: Real space and momentum space
inverse participation ratio (IPR) of energy eigenstate closest to E = 0, denoted as IR(q = 2) and IM (q = 2)
respectively, calculated for various L and averaged over 200 realizations. The L dependence clearly shows that when
the real space IPR is delocalized IR(q = 2) ∼ 1/L the momentum space IPR is localized and vice-versa. This
demonstrates the transition in 1D goes from a semimetal to an Anderson insulator. Bottom right: The momentum
space IPR IM (q = 2) (left vertical axis) and the zero energy DOS ρ(0) (right vertical axis) for L = 987 as a function
of W , which demonstrates that the zero energy DOS becomes non-zero when the wavefunctions delocalize in
momentum space.
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Supplementary Figure 8: Graphic demonstration that the model of perfect SOC in 2D is a direct sum of two
decoupled π flux models. The model of perfect SOC, on the left of the equality sign, is characterized by direction
dependent hopping matrices. Using blue squares and red circles to depict the bipartition, hopping only connects
|�, ↑〉 with |◦, ↓〉, and separately |�, ↓〉 with |◦, ↑〉. The hopping in y -direction is imaginary and directed (this results
from the asymmetry of σy) and, in conclusion, leads to the inclusion of a flux π per plaquette. The onsite potential
does note violate the described block-diagonalization.

model Z−1 v/v0

2D SOC 1 +

[
W

t sin(Q)

]2
Z

(
1− 1− cos(Q)

2

[
W

t sin(Q)

]2)

3D SOC 1 +
3

2

[
W

t sin(Q)

]2
Z

(
1− 2− cos(Q)

2

[
W

t sin(Q)

]2)
1D LRH 1 + 2

[
W

t| sin(Q)|σ

]2
Z

2D cTBG 1 +
W 2

t2

[
cos
(

3kθ
2

)
+ 6

+ 2 cos
(

3kθ
4

) ]
12 sin2

(
3kθ
4

) Z


1− W 2

t2 sin2
(

3kθ
4

)
[
2 cos

(
3kθ
2

)
− 16 cos

(
3kθ
4

)
+ 4 cos

(
9kθ
4

)
+ 5 cos(3kθ)− 49

]
72


HC, δµ = dµ 1 +

W 2

t2
3

8 sin2(3Q/4)
Z

(
1− W 2

t2
1/4

1 + 2 cos(Q/2)

)
HC, δµ = Oπ/2dµ 1 +

W 2

t2
3[2 + cos(

√
3Q/2)]

8 sin2(3
√

3Q/4)
Z

(
1 +

W 2

t2
5 + 4 cos(

√
3Q/2)

4[1 + cos(
√

3Q/2)]2

)

HC, δµ = d1,2 1 +
W 2

t2
1

4 sin2(3Q/4)
Z

1− W 2

t2

(
3[cos(Q/2)− 2 cos(Q)] −

√
3[cos(Q/2) + 2 cos(Q)]

−
√

3[cos(Q/2) + 2 cos(Q)] 5 cos(Q/2)− 2 cos(Q)

)
48 sin(3Q/4)2


Supplementary Table 1: Perturbative corrections to quasiparticle weight Z and velocity v/v0 for a variety of magic
angle models. Note that for the honeycomb model and δµ = d1,2, the symmetry protection of nodes is lost. It implies

a relocation of K−point node δk = W 2(1,−
√

3)T /[12t2(1 + 2 cos(Q/2)) and a distorted velocity matrix. For cTBG,

the momentum dependent self-energy has the form Σph(px, py) + Σ̃ph(py,−px) and we extract v/v0 = Z(1 + Σp).

For the next to leading order, all states at Manhatten distance 2Q from the origin are integrated out and we obtain

Σ(4)(k) ' − E
16

(
W

t

)4 (
4 cos(Q) + 10 cos(2Q) + 11) csc4(Q) sec2(Q)

)
+

(
W

t

)4
tk · σ

16
(4− 5 cos(Q) + 6 cos(2Q)) csc(Q)4 sec(Q) (21)

This is the origin of Eq. (4) of the main text. It turns out that the results obtained for the 2D model of perfect
SOC directly apply to the π flux model. This is best graphically shown, see Supplementary Figure 8: the model of
2D perfect SOC is a direct sum of two π-flux models which in the absence of interactions completely decouple. By
consequence, all single particle results obtained for model of 2D perfect SOC also hold for the π-flux model.

Renormalization of interactions. We present an analytical estimate of the renormalization of the interaction upon
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W/t
Supplementary Figure 9: Divergence of contact interaction according to Eq. (27) for the model of 2D SOC. Here,
the fourth order perturbative self energy was employed and we used γ = 1/5.

projection onto certain minibands and approaching the transition for the model of 2D SOC. Let the bare (W = 0)
model in the continuum be written as (Ki are various Dirac/Weyl nodes, with linear k · p Hamiltonian h(Ki)(p))

S =
∑
Ki

∫ 1/a

(dp)

∫
dτ c̄(Ki)(p)[∂τ + h(Ki)(p)]c(Ki)(p)

+
∑

K1,2,3,4

∫ 1/a 4∏
j=1

(dpj)

∫
dτ(2π)dg{Ki}δK1+K3−K2−K4

δ(p1 + p3 − p2 − p4)
[c̄(K1)(p1)c(K2)(p2)][c̄(K3)(p3)c(K4)(p4)]

|p1 − p2|σ
.

(22)

The spectrum of h(Ki)(p) has the form v0|p| with bare value v0 ∼ ta and, for contact interaction (σ = 0), g{Ki} ∼ Uad,
while for Coulomb interaction (σ = d− 1) g{Ki} ∝ δK1,K2 . Perturbation theory indicates a dimensionless parameter

g{Ki}
v0/ad−1

∼ U

t
for σ = 0 (contact interaction), (23)

α =
g{Ki}
v0

for σ = d− 1 (Coulomb interaction). (24)

We now consider the effect of integrating out high energy states and projecting onto a miniband with effective Brillouin
zone size 1/a′. This leads to

S =
∑
Ki

∫ 1/a′

(dp′)
∫
dτ c̄

(Ki)
< (p′)Z−1[∂τ +

v

v0
h(Ki)(p′)]c(Ki)

< (p′)

+
∑

K1,2,3,4

∫ 1/a′ 4∏
j=1

(dp′j)
∫
dτ(2π)dg{Ki}δK1+K3−K2−K4δ(p

′
1 + p′3 − p′2 − p′4)

[c̄
(K1)
< (p′1)c

(K2)
< (p′2)][c̄

(K3)
< (p′3)c

(K4)
< (p′4)]

|p′1 − p′2|σ
.

(25)

The renormalizations Z and v/v0 originate from scalar and matrix components of the self-energy and were calculated

perturbatively above. We now first rescale p′ = a
a′ p with p ∈ (0, 1/a) and then define c

(K)
< (ap/a′)Z−1/2(a/a′)d/2 =

c(K)(p). Under this rescaling, we restore the form of Eq. (22), including its UV cut-off 1/a, but obtain the rescaling
v0 → va/a′, g → g(a/a′)d−σZ2. From this we obtain the final formula for renormalization of the dimensionless
coupling constant

Ueff/teff

U/t
= γ

( a
a′

)d−1 Z2

v/v0
(contact interaction), (26)

αren.

αbare
=

Z2

v/v0
(Coulomb). (27)

Here, γ is an unknown constant of order unity which depends on details of the cut-off of the linearized theory.
Importantly, the integration reduces the bare contact interaction by a factor (a/a′)d−1, except in the closest vicinity
of the magic angle where the vanishing velocity overtakes the reduction, see Supplementary Figure 9.

Relationship to number theory. In addition, we show the relationship of the sequence of relevant perturbative
processes with certain well known sequences from number theory. Starting from the scattering process of order
l1 = 1 we want to determine the sequence {ln}∞n=1 for which the lnth order momentum transfer carves out smaller
minibands than the ln−1th order. In formulae, this implies for the 2D model of perfect SOC of the main text



11

and arbitrary incommensuration wavevector Q the condition sin2(lnQ) < sin2(ln−1Q). We now concentrate on

the specific case Q = 2π/φ2 = π(3 −
√

5). For this situation, the defining condition on the sequence of ln is

sin2(πln
√

5) < sin2(πln−1

√
5). The sequence {ln}∞n=1 for which ln

√
5 successively approaches integers is the sequence of

denominators of the leading rational approximants, i.e. the sequence of denominators of continued fraction convergents
of
√

5 (OEIS ID A001076). This sequence is also half the value of the even fibonaccis ln = F3n/2.
This sequence also connects to the formation of minibands as found with the finite sizeQn = 2πFn−2/Fn. Intuitively,

when Fn is even (n is a multiple of 3), then at order Fn/2, the Dirac nodes gap out, but then for Fn+1 and Fn+2 this
perturbative gap must have moved to small but finite energy, forming the miniband. This motivates using Q3n+1 and
Q3n+2 to study the effective model of successive minibands, as we do in Supplementary Note Supplementary Note 6.

Therefore, we offer a proof that connects this sequence to the perturbative minibands which requires the following
facts about Fibonaccis

• F3m is even while F3m+1 and F3m+2 is odd.

• Catalan’s Identity: (−1)n−rF 2
r = F 2

n − Fn+rFn−r.

• (−1)n = FnFn−1 − Fn−2Fn+1.

To determine the order of perturbation theory where a gap is opened, we need to find an integer gn such that
gnQn = 2π×q/Fn such that q is an integer closest to Fn/2 modulo Fn. This is accomplished by the following theorem

Theorem. Let n = 3m+ r for r = 0, 1, 2, then the integer gn = F3m/2 is the smallest integer such that gnFn−2 ≡
Fn+δn

2 mod Fn with integer |δ3m| ≤ 1. In particular, δ3m = 0, δ3m+1 = (−1)m, and δ3m+2 = (−1)m+1.

Proof. We break this up into cases. Since Fn−2 does not divide Fn, we merely need to find a gn that satisifies the
relevant cases in order to find the unique gn, as long as gn < Fn.

Case 1: r = 0. For this case we can prove the above by noting that if g3m = F3m/2, and Fn−2 is necessarily odd,
then (We use N to represent an arbitrary, unimportant, integer.)

gnFn−2 = 1
2F3m(2N + 1) ≡ 1

2F3m modFn, (28)

with δ3m = 0.
The value gn is smallest since δn must vary by 2 in order for the equation Fn+δn

2 to remain integer valued, and the
condition |δn| < 1 prevents that.
Case 2: r = 1. For this case we observe using the previous fact about Fibonaccis that

F3mF3m−1 = F3m+1F3m−2 + (−1)3m, (29)

and therefore since F3m−2 is odd

1
2F3mF3m−1 = (N + 1

2 )F3m+1 + 1
2 (−1)3m ≡ F3m+1 + (−1)3m

2
modFn, (30)

and therefore g3m+1 = F3m/2 with δ3m+1 = (−1)m.
In order to show that gn is smallest, only δ3m+1 = −(−1)m could be a problem, but we notice that δ3m+1 = −(−1)m

is satisfied (uniquely) for gn = F3m+1 − F3m/2 > F3m/2.
Case 3: r = 2. For this case we take Catalan’s identity with r = 2 to get

F 2
3m = F3m+2F3m−2 − (−1)3m, (31)

and therefore since F3m−2 is odd

1
2F3mF3m = (N + 1

2 )F3m+2 − 1
2 (−1)3m ≡ F3m+2 − (−1)3m

2
modFn, (32)

so again g3m+2 = F3m/2 with δ3m+2 = (−1)m+1.
In order to show that gn is smallest, only δ3m+1 = (−1)m could be a problem, but we notice that δ3m+1 = (−1)m

is satisfied (uniquely) for gn = F3m+2 − F3m/2 > F3m/2.

Therefore, the order of perturbation theory that opens up a gap nearest to E = 0 for Q = 2πF3m+r−2/F3m+r for
r = 0, 1, 2 is F3m/2.
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Generality of the magic-angle phenomenon - symmetry protection. In this part of the supplementary note we
discuss the generality of our findings by highlighting the general condition for the appearance of the magic angle
phenomenon, namely the stability of the semimetal at weak coupling.

We concentrate on nodes in the kinetic term T̂ which are protected by a symmetry group GT . For example, this
analysis applies to each model we have considered in 2D as well as Dirac semimetals in 3D. Note that in general GT
is a subgroup of all symmetry operations of the kinetic term. Let UST be the representation of ST ∈ GT in the (e.g.

spinorial) Hilbert space, then the symmetry of the Hamiltonian implies T (k) = U†ST T (STk)UST . We concentrate on
high symmetry points where STK = K, ∀ST ∈ GT . Then, a non-trivial representation implies degeneracy in view
of [T (K), UST ] = 0 ∀ST ∈ GT (formally, two non-commuting UST are needed). We further assume a group GV of

spatial (point group) symmetries of the quasiperiodic background V̂ , such that

V (x) =
∑

SV ∈GV
ŨSVWŨ†SV e

iQx·SV ê0 + h.c.. (33)

Here now, ŨSV is the representation of SV ∈ GV and ê0 is an arbitrary vector in Rd.
In this section, we consider Eq. (18) formally to all orders in perturbation theory. The semimetallic behavior persists

if a) Σ(k) is hermitian and b) T (k) + Σ(k) has the same symmetry protected touching point as T (k), i.e. if Σ(k)
respects the symmetries ensuring the semimetal. In view of the incommensuration, perfect resonance is formally absent
to any order in perturbation theory and therefore, the decay rate 1/τ ∼

∑
k′ |Tk,k′ |2δ(Ek − Ek′) (more generally:

the anti-hermitian part of the self-energy) vanishes (Tk,k′ denotes the T-matrix). Thus a) is fulfilled and 1/τ 6= 0
signals the breakdown of perturbation theory (spontaneous unitarity breaking). We can then show to all orders in
perturbation theory that the semimetal is stable provided GT is a subgroup of GV .

We proceed to the proof of Σ(k) = U†ST Σ(STk)UST under the outlined assumptions. To get a feeling, we first
consider second order perturbation theory.

Σ(2)(k) =
∑

SV ∈GV
ŨSVWŨ†SV [E+ − T (k +QSV ê0)]−1ŨSVW

†Ũ†SV . (34)

We compare to

U†ST Σ(2)(STk)UST =
∑

SV ∈GV
U†ST ŨSVWŨ†SV UST [E+ − U†ST T (STk +QSV ê0)UST ]−1U†ST ŨSVWŨ†SV UST

=
∑

SV ∈GV
U†ST ŨSVWŨ†SV UST [E+ − T (k +QS−1

T SV ê0)]−1U†ST ŨSVW
†Ũ†SV UST (35)

This expression is invariant provided the action of ST onto GV is a bijection of GV onto itself ∀ST ∈ GT , i.e. STSV ∈
GV ∀SV ∈ GV and STGV = GV as this allows to uniquely relable the summation index. Taking SV = 1 implies
that ST ∈ GV and hence GT is a subgroup of GV . By consequence, the representation in the Hilbert space fulfills

ŨS−1
T SV

= U†ST ŨSV and Σ(2)(k) is invariant under the symmetries protecting the semimetal. We now continue with

the next order Σ(4), from there the generality of the statement becomes apparent,

Σ(4)(k) =
∑

SV ∈GV

∑
S′V ∈GV

S′V ê0 6=−SV ê0

ŨSVWŨ†SV [E+ − T (k +QSV ê0)]−1

ŨS′VWŨ†S′V
[E+ − T (k +QSV ê0 +QS′V ê0)]−1

ŨS′VW
†Ũ†S′V

[E+ − T (k +QSV ê0)]−1ŨSVW
†Ũ†SV . (36)

The exclusion S′V ê0+SV ê0 6= 0 ensures the irreducibility with respect to Gk. Again we can apply an ST transformation
and exploit the two conditions exposed above to relabel both SV and S′V . This implies the invariance of Σ(4). This
procedure can be used to arbitrary order in perturbation theory.

Supplementary Note 4. WAVEPACKET DYNAMICS

Non-interacting Wavepacket Expansion as a Probe of the Single Particle Quantum Phase Transition. Firstly we
demonstrate that wavepacket dynamics can be used as a tool to observe the single particle quantum phase transition
in the models that posses a reentrant semimetal in two dimensions. Note that in three dimensions due to the diffusive
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Supplementary Figure 10: Wave packet dynamics displaying the spread of the wavepacket 〈r(t)2〉 as a function of
time computed from the KPM on a system size of L = 987 with a KPM expansion order NC = 212. (Left)
Wavepacket spreading for W in the semimetal and passing into the metallic phase at W ≈ 0.54. (Right) Similar
results but for W passing from the metallic phase to the reentrant semimetal at W ≈ 0.57. The data clearly shows a
non-monotonic wavepacket spreading for increasing quasiperiodic potential strength which gives rise to a
non-monotonic behavior in the dynamic exponent z shown in the inset, which we extract via fits to the long time
dynamics (the dashed lines mark the entry into the metallic phase).

states at finite energy that dominate the dynamics this probe is not useful6. We initialize a wavepacket to the origin
|ψ0〉 and use the KPM to time evolve the state to obtain |ψ(t)〉 = e−iHt|ψ0〉 and from this we compute the spread
of the wavepacket as a function of time from 〈r(t)2〉 ≡ 〈ψ(t)|r2|ψ(t)〉. From the long time dynamics we extract the
dynamical exponent from the scaling 〈r(t)2〉 ∼ t2/z. We focus on the perfect SOC Hamiltonian from the main text.
The KPM expands the time evolution operator in terms of Chebyshev polynomials up to an order NC , which dictates
the final time that can be reached in the numerical calculations. Here we focus on a large linear system size of L = 987
and use a KPM expansion order NC = 212, which allows us to time evolve the wavepacket until it spreads out across
the sample. As shown in Supplementary Figure 10 we find rather unusual wavepacket dynamics which is a signature
of a sequence of semimetal-metal-semimetal transitions. As a function of increasing W we find that the speed at which
the wavepacket spreads out monotonically decreases until we reach the metallic phase where the dependence on W is
rather weak. Then, upon reentering the semimetal phase at larger W the wavepacket spreading speeds back up. This
is clearly demonstrated in the dynamical exponent z showing non-monotonic behavior in the inset. Interestingly, our
estimate of z is not diffusive, consistent with the marginal nature of 2D. We expect that this wavepacket signature
can be used to detect the transition in cold atom experiments.

Wavepacket expansion in the hydrodynamic regime of strong interactions. Now we turn to the dynamics of a
cold atomic cloud in magic-angle emulators. We concentrate on the model of perfect SOC in 2D, and incorporate
velocity and wave function renormalization perturbatively, as exposed in Supplementary Note Supplementary Note 3.
Complementary to the previous section, we here consider strong interactions leading to fast equilibration, justifying
an effective hydrodynamic approach.

We describe the dynamics of the system using the Boltzmann equation for the distribution function fn

ḟn + ṙn∇rfn + ṗ∇pfn = Stn[f ]. (37)

Here, we introduced the multi index n = (K ,p, ξ) to label the states (node K , momentum relative to the node p,
band ξ = ±1). Semiclassical fermions have energy εn = ξ[v|p| − v3|p|3− vC4

(p4
x + p4

y)/|p|] and velocity ṙn = ∂εn/∂p.
The momentum satisfies ṗn = F (r) for force F . The collision kernel (outgoing states are denoted by a bar) is

Stn[f ] = −
∑
m,n̄,m̄

{Wnm→n̄m̄fnfm(1− fn̄)(1− fm̄)−Wn̄m̄→nmfn̄fm̄(1− fn)(1− fm)} . (38)

The Boltzmann treatment is valid when either thermal length or Fermi wave length exceed the mean free path. We
determine the transition probability in the Fermi golden rule approximation (see e.g. Ref. 8)

Wnm→n̄m̄ = 2πU2| 〈n|n̄〉 |2 | 〈m|m̄〉 |2(2π)3δ(εn + εm − εn̄ − εm̄)δ(pn + pm − p n̄ − pm̄)δ̃Kn+Km,K n̄+K m̄
. (39)

The tilde on the Kronecker delta denotes equality modulo 2π. The collision integral conserves particle number and
energy

∑
n Stn[f ] = 0 =

∑
n εnStn[f ]. While it does not conserve the total crystalline momentum ptot = (K + p)

due to umklapp scattering, the momenta p relative to the nodes are conserved
∑
n pnStn[f ] = 0. Therefore, number

density ρN =
∑
n fn and energy density ρE =

∑
n εnfn are conserved and the energy current j ε =

∑
n εnṙnfn
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(εnṙn = v2 pn + O(v3, vC4
)) decays slowly due to nonlinearities in the spectrum. We estimate its decay rate as

1/τ = Γ0f(α)Z(α)2/v̄(α)2 where Γ0 = U2
0 /t and f(α) is a dimensionless regular function of α which is proportional

to v3, vC4
.

Following a formalism of hydrodynamics in graphene9 we introduce smoothly varying Lagrange multipliers (chemical
potential, temperature, hydrodynamic velocity) for each of the conserved quantities. The Fermi energy (measured
from the Dirac node) is assumed to be small as compared to the mini-bandwidth. In particular the hydrodynamic
velocity u enters as j = uρN , and for µ� T , ρN ∼ µT/v2 +O(u2/v2), ρE ∼ T 3/v2 +O(u2/v2). The hydrodynamic
equations reduce to

ρ̇N +∇r (ρNu) = 0 (40a)

ρ̇E +∇r

(
3v2

2v2 + u2
uρE

)
= F · uρN (40b)

u∂tP + v2∇P +H(∂tu + (u · ∇)u) = ρN (v2F − u(F · u))− Hu
τ

(40c)

The quantity H = 3v2

2v2+u2 ρE is the enthalpy and P = v2−u2

2v2+u2 ρE is the pressure. The first two formulae are continuity
equations, while the last expression is the Euler equation for relativistic fluids. We have neglected all dissipative
(viscous) corrections. We incorporate the magic angle effect by using v = v(α) and the force F = −UZ(α)2∇ρN
accounts for onsite Hubbard interaction energy in the Hartree approximation.

We numerically solve Eqs. (40), see Supplementary Figure 11 which demonstrates the manifestation of the magic
angle effect in various quantities: (i) There is an α dependent crossover from a short ballistic evolution to diffusive
motion at time τ . (ii) Near the magic angle, the overdamped dynamics [vanishing τ(α)] prevents the ballistic wave
front propagation of energy density (compare c) vs. d)). (iii) Similarly, in prevents the formation of waves in the
density profile and (iv) the negative expansion velocity of average position 〈r2〉 at intermediate time. (v) The behavior
as a function of α (or W ) is nonmonotonic, compare Supplementary Figure 11 e),f) and Supplementary Figure 10.

Discussion of experimental observations. We propose the observation of wave packet dynamics that can be mea-
sured in experiment using absorption imaging techniques. We have discussed two complementary limits of wavepacket
dynamics: (i) the non-interacting limit, Supplementary Figure 10 (ii) an interacting Fermi gas, Supplementary Fig-
ure 11.

The experimental time evolution is limited, e.g. due to particle loss, to about 50 hopping times. This is sufficient
to resolve the onset of the crossover from ballistic to (super-)diffusive motion in the non-interacting case.

In the strong coupling regime, and for the chosen parameters in Supplementary Figure 11 (ρE = v(α = 0)/ξ2) the
energy density at α = 0 implies a typical temperature scale of the order T ∼ ta/ξ (a is the lattice constant). For
a/ξ ∼ 1/4 this corresponds to T/TF ∼ 1/4 which is well in the experimentally realistic regime. The observation of
the consequences of the magic angle effect at fixed energy density requires a time evolution at least up to 10ξ/v(α =
0) = 10(ξ/a)/t. Thus, for typical cloud sizes ξ ∼ 4a (i) the typical temperature in Supplementary Figure 11 is much
smaller than the bandwidth (ii) magic angle effects are well resolvable in present day cold atomic experiments with
coherence up to 50 hopping times.

Supplementary Note 5. MULTIFRACTAL ANALYSIS AND WAVEFUNCTIONS

In this supplementary note, we explain the procedure of extracting the multifractal exponents and the underlying
physical interpretations.

Scaling exponent τM . We now discuss how we extract τM (q) from inverse participation ratio (IPR). For a given
wavefunction in momentum space, the finest grid is 2π/L × 2π/L. We introduce an integer binning factor B which
controls the resolution of the momentum space wavefunction. The IPR constructed in this way has been dubbed the
momentum space IPR6 and given by

IM (q, L;B) =
∑
k′

∣∣∣φ̃E(k′;B)
∣∣∣2q ∼ (Ba

L

)τM (q)

, (41)

where k′ denotes the wavevector of the binned wavefunction grid and φ̃E(k′;B) is the binned wavefunction. The
scaling behavior only holds when 1 � B � L/a. To extract τM (q), we choose two consecutive values of binning
factors, B1 and B2, and then perform numerical derivative as follows:

τM (q;B1, B2) =
ln IM (q, L,B1)− ln IM (q, L,B2)

lnB1 − lnB2
. (42)
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Supplementary Figure 11: Simulation of hydrodynamic evolution, Eq. (40). Initial conditions are

ρE(0) = v(α=0)
ξ3

(
1 + 3e−r

2/ξ2
)

, ρ(r , t = 0) = e−r2/[2ξ2]

ξ2 , and u(0) = 0. In the plots, all lengths are in units of ξ, all

times in units of ξ/v(α = 0), in these units U(α = 0) = 0.1, 1/τ(α = 0) = 0.03. Evolution for various times (shown
as color) of the particle density a) far from and b) near the magic angle αc = 0.536; c) d) similarly for the evolution
of the energy density. e), f): Evolution of 〈r2〉 =

∫
d2xr2ρN (r , t), where the value of α is shown as color.

At last, we average τM (q;B1, B2) over phases in the quasiperiodic potential. For L = 144, we construct τM with 100
realization. We only use 10 realization for L = 610. For real space scaling exponents (τR), we adopt similar procedures
to extract their values. For the case of cTBG, we use 100 realizations of L = 377, but to handle binning we truncate
the wavefunction at the edge of the BZ (where the wave function is effectively zero) to produce a 376 × 376 wave
function we can then perform the binning scheme on.

Real space multifractality. As a complementary analysis, we study the multifractal spectrum of the real space
wavefunctions at zero energy. We construct the corresponding real space scaling exponent spectrum τR(q) which
encodes plane wave, multifractal, and localized wavefunctions.

For W/t < 0.525, the real space wavefunction is a plane wave, characterized by the Fourier modes at Dirac
points (kx, ky) = (0, 0), (0, π), (π, 0), and (π, π). The multifractal spectrum τR(q) is characterized by a straight line
τR(q) = 2(q − 1). Plane wave states can also be found for 0.55 < W < 1.5, the inverted semimetallic regime. For
0.525 < W/t < 0.55, the real space wavefunctions show multifractal behavior characterized by a nonlinear τR(q)
spectrum. For W/t� 1.5, the real space wavefunctions become localized, τR(q) = 0 for q > 0.

We numerically compute the τR(q) spectrum for various values ofW in different phases. In Supplementary Figure 12,
we compute W/t = 0.35, 0.53, 0.7, 1.75 for L = 144 and average over 100 realizations. W/t = 0.35 and W/t = 0.7
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Supplementary Figure 12: τR(q) with different values of W with L = 144 and 100 realizations. For W = 0.35 and
W = 0.7, the multifractal spectra approach to plane wave, τR(q) = 2(q − 1), as increasing b. For W = 0.53, the
spectrum is multifractal described by a nonlinear function. For W = 1.75, τR approaches to a localized spectrum,
τR(q) = 0 for q > 0, as increasing b. The existing data still suffer from a strong finite size effect and do not clearly
show a localized spectrum. We therefore turn to the finite size dependence of the real space wavefunction with
W = 1.75, which indeed shows localization as the real space IPR is L independent in this regime.
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Supplementary Figure 13: The inverse participation ratio of real space wavefunctions with different system sizes.
Blue circles represent the data of L = 89 with 100 realization; red squares represent data of L = 144 with 100
realization; black diamonds represent data of L = 233 with 50 realization. The collapse of data with different sizes
(W/t ≥ 1.75) indicate localized regime.

show plane wave spectrum as increasing the real space binning factor b. W/t = 0.53 demonstrate a weakly nonlinear
multifractal spectrum with a fitting function τR(q) ≈ 2(q − 1) − 0.16q(q − 1) for |q| < 1. A much larger system size
is needed for quantitatively determining the spectrum which is beyond the scope of this work. For W/t = 1.75, the
spectrum gradually approaches to localized like behavior as increasing b. In our L = 144 data, we do not find a clear
localized spectrum, due to finite size effects. We therefore turn to the real space IPR data as a function of system
size in Supplementary Figure 13. This indeed shows strong evidence for localization as the IPR is L independent for
W/t ≥ 1.75.
Interpretation of unfreezing transition. As we have demonstrated in the maintext, the momentum space wave-

functions serve as a proxy for the semimetal-metal transition. The multifractal analysis in momentum space here is
distinct from the conventional notion of wavefunctions in real space10. We discuss the interpretation of the multifractal
spectrum in depth here.

For W = 0, the zero energy wavefunction is composed of the Fourier modes at the Dirac points . The zero energy
states are linear combinations of these four plane waves. The probability distributions (integrating over the spin
degrees of freedom) of the momentum space wavefunction generically contains four peaks, which we call “ballistic
peaks”. In the multifractal τM (q) spectrum, these ballistic peaks correspond to a frozen spectrum, τM (q) = 0 for
q > 1.

The frozen feature in the momentum space wavefunction suggests that the ballistic peaks are sharply defined, with
the finest localization length π/L. The τM (q)s extracted from the numerics weakly depend on the choice of binning
factors B1 and B2. As W increases, satellite peaks with weaker amplitude arise. When W ≈ Wc, the τM (q)s still
show freezing behavior for B = 1, 2 but become generically non-zero for larger binning factors. Such features suggests
that the distance between a ballistic peak and the nearest satellite peaks is around 2 ∗ 2π/L to 4 ∗ 2π/L. The ballistic
peaks start to hybridize with the satellite peaks when W ≥ Wc. This corresponds to an unfreezing transition in
momentum space, which describes a zero-measure set to an extensive set of Fourier modes. The Wc determined here
coincides well with the semimetal-metal transition extracted from the density of states calculations.

For larger values of W , an inverse semimetal transition, metal-to-semimetal, takes place. The same multifractal
analysis in momentum space also applies.

Minimal system size for momentum space delocalization. In this part we discuss the minimal system size required
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Supplementary Figure 14: Comparisons of IPRs in momentum space that show scaling with system size indicative of
delocalization in momentum space, (Top left) Q = QB = 2π(51−

√
5)/181 ≈ 2π × 0.4133 (Top right)

Q = QA = 2π(1/2− 1/ϕ6) ≈ 2π × 0.4443. (Bottom left) The phase diagram, as in Fig 1 b of the main text, with
cuts along Q = 2π/ϕ2 ≈ 2π × 0.3820, Q = QB = 2π × 0.4133, Q = QA = 2π × 0.4443. (Bottom right) Summary of
system size dependence of the minimal IPR along these three cuts, demonstrating the existence of a crossover scale
between delocalized and localized regimes for Q = QA.

to observe the universal magic angle effect, i.e. momentum space delocalization at the magic angle.

At small twist angle, the separation of length scales between original lattice spacing and moiré supercell becomes
large and suppresses the size of the metallic sliver in the phase diagram, Fig. 1b, c of the main text. This renders
the observation in numerical (i.e. finite size) simulations very difficult. At smallest twist angles, θ � 10◦ for TBG
and (π −Q)� 1 for 2D SOC, wavefunction delocalization is not observable at small system sizes.

However, for the specific case of the 2D SOC model and a given Q ≈ π, we here demonstrate the appearance of
a crossover length scale, beyond which the magic angle effect becomes observable. In Supplementary Figure 14 we
present data for Q = 2π(1/2−1/ϕ6) ≈ 2π×0.4443, for which wave function delocalization (i.e. system size dependent
IPR) occurs for L & 160 and we compare this to other Q further from π. Note that for Q ≈ 2π × 0.4443 the position
of the magic angle non-trivially depends on the finite size (i.e. on the concrete numerical rational approximant).

We conclude the discussion of the origin of this critical system size with a physical interpretation. Within our
finite size numerics, the incommensurate perturbation repeats itself on the length scale of the entire system. Within
our picture, the commensurate structure provides a cut-off for the single particle transition that rounds out the non-
analyticity and the wavefunctions do not delocalize in momentum space. Based on this and our numerical observation,
we conjecture that for any irrational Q and sufficiently large system size, wave function delocalization may be observed.
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Supplementary Note 6. WANNIER STATES AND BUILDING HUBBARD MODELS

In order to analytically build the Hubbard models analyzed in the main text, we use the Hamiltonian as perviously
defined

Ĥ = T̂ + V̂ + Û ,

T̂ =
∑
r,µ

[
it

2
c†rσµcr+µ̂ + h.c.],

V̂ = W
∑
r,µ

cos(Qnrµ + φµ)c†rcr,

Û = U
∑
r

c†r,↑c
†
r,↓cr,↓cr,↑.

(43)

We take Qn = 2πFn−2/Fn and the system size to be L = mFn such that Fn defines a supercell of size ` = Fn. The
model has a particle-hole symmetry when φµ = π/2, which we will concentrate on in order to isolate bands near
E = 0.

The first task is to isolate bands. With L = m`, our Brillioun Zone will have m2 sampled points. Due to the
imposed discrete translational symmetry, one can write the single particle Hamiltonian Ĥsp = T̂ + V̂ as

Ĥsp =

m−1⊕
nx,ny=0

Ĥn, (44)

for n = (nx, ny) and, using Bloch’s theorem, the individual Hamiltonians are (in first quantized notation)

Ĥn =
∑
r,µ

[
it

2
e−i2πnµ/L |n, r〉 〈n, r + µ̂| ⊗ σµ + h.c.

]
+W

∑
r,µ

cos(Qnrµ + φµ) |n, r〉 〈n, r| , (45)

on a system size of size `. In the thermodynamic limit m→∞, and we can plot dispersions to see if a gap has opened.
Once diagonalized, we have a set of states {En,j}, and looking near E = 0, we can form projectors onto energy states
within a miniband

P̂ =
∑

En,j∈Miniband

|n, j〉 〈n, j| . (46)

This projector should have an integer multiple of m2 states within it, and each (nx, ny) pair should contribute the
same number of states. This is a check to determine if we have a “good band.”

Further, we can get an idea of where the Wannier centers should be by looking at the integrated local density of
states

ρBand(r) = 〈r|P̂ |r〉 . (47)

Considering systems with periodic boundary conditions, we consider the position operators
{cos(2πx̂/L), sin(2πx̂/L), cos(2πŷ/L), sin(2πŷ/L)}, and we construct the projected operators

{P̂ cos(2πx̂/L)P̂ , P̂ sin(2πx̂/L)P̂ , P̂ cos(2πŷ/L)P̂ , P̂ sin(2πŷ/L)P̂}. (48)

These operators no longer commute with one another and cannot be simultaneously diagonalized. The solution is
approximate joint diagonalization (AJD) achieved by minimizing a cost function: for a set of operators O, we need
to find a unitary matrix U such that

σ(U) =
∑
A∈O

∑
i6=j
|(U†AU)ij |2 (49)

is minimized. An efficient algorithm for this was developed for signal processing11 and enumerated for maximally
localized Wannier states in Ref. 12. Our algorithm to achieve this, written in Julia, can be found in Ref. 13.

The columns of the resulting unitary matrix U are the maximally localized Wannier states. The resulting single
particle part of tight-binding Hamiltonian is found numerically to be given approximately by

ĤWannier = U†P̂ ĤspP̂U ≈
∑
R,µ

[
iteff

2
|WR,τ 〉 〈WR+µ̂,τ ′ | [σµ]τ,τ ′ + h.c.

]
, (50)
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Supplementary Figure 15: (Upper left) The integrated density of states ρBand(x, y) along with Wannier centers (red
dots) for ` = 377 and m = 8 and W = 0.52445t. (Upper right) The magnitude of the elements of the Wannier
Hamiltonian HWannier. (Lower left) 3D representation of a single Wannier function |W (r)|2 and (Lower right) The
exponential localization of the Wannier function |W (r)|2 ∼ e−r/ξ.

for Wannier states |WR,τ 〉 labeled by the emergent lattice positions R and internal index τ = 1, 2. The interaction
term also gets renormalized (again, returning to second quantized notation)

ĤWannier−int = Ueff

∑
R

d†R,1d
†
R,2dR,2dR,1 (51)

where dR,τ annihilates the states |WR,τ 〉, and

Ueff = U
∑
r

{|W ↑R,1(r)|2|W ↓R,2(r)|2 + |W ↑R,2(r)|2|W ↓R,1(r)|2 − 2<[W ↑R,1(r)∗W ↓R,2(r)∗W ↓R,1(r)W ↑R,2(r)]}, (52)

where 〈r, σ|WR,τ 〉 = Wσ
R,τ (r) and Ueff is found to be (numerically) independent of R.

To perform the calculations, we look close to the transition Wc calculated previously and find where the smallest
gap opens in the dispersion. In the range where that gap opens and closes, we perform Lanczos to find the Bloch states
and then we perform AJD to find the Wannier states. After making sure the states are “good” states (exponentially
localized and make the appropriate emergent lattice), we can find the Hamiltonian as described above.

Computed Wannier functions. As described in Supplementary Note Supplementary Note 3, we can probe mini-
bands by using successive pairs of odd Fibonaccis (even Fibonaccis gap out the Dirac nodes, not allowing us to make
the effective Hubbard model described above). We perform the calculation for ` = Fn = 13, 21 (second miniband),
` = Fn = 55, 89 (third miniband), and ` = 233, 377 (fourth miniband). In the main text, we present data for ` = 13,
and here we show data for the point of highest Ueff/teff ≈ 4115U/t.

After tracking the gap opening and closing when ` = 377, we construct the Wannier states (at W = 0.52445t
and m = 8), and the results are in Supplementary Figure 15. We see Wannier centers on top of the ρBand(r) in
Supplementary Figure 15 upper-left, along with a visual representation of the resulting HWannier on the upper-right
(clearly showing a banded Hamiltonian). The Wannier state is visually seen in Supplementary Figure 15 lower-left
and after we bin the data, we find the states are exponentially localized in Supplementary Figure 15 lower-right.
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Supplementary Figure 16: The interaction of the center band approaching the transition. Each successive pair of
odd ` represent the opening of a new miniband. The data labeled “3 bands” comes from the mulitorbital models,
following the Wannier states continuously connected to the single-orbital model. Note that Q = 2π/ϕ2 for golden
ratio ϕ and Q` = 2πFn−2/` with ` = Fn.

Doing this multiple times leads to an estimate of the effective interactions on either side of the metal transition in
Supplementary Figure 16. We should note that for ` = 13, 21, part of the data is pulled from a multi-band Hubbard
model by tracking Ueff/teff on the Wannier functions with maximal overlap prior to the multi-band Hubbard model.
Also, the Wannier states for ` = 89 could not fully be fully converged, so the data for Ueff/teff is appropriately noisy
(and an underestimate).

Finite energy bands and multi-orbital Hubbard model. It is interesting to note that at finite energy, flat bands
develop and in some cases intersect the band near E = 0 which is the focus of this text. As a clear example,
note for ` = 13, see that a flat, Dirac bands appear around the region labeled 1 in Supplementary Figure 17(upper
left) and intersect the band in the region labeled 3. These flat bands have greatly increased Ueff/teff away from
the transition. When the multiorbital Hubbard model appears, the dispersion changes drastically, see Supplementary
Figure 17(upper right) and has Wannier centers appearing along diagonals within a supercell as seen in Supplementary
Figure 17(middle left). With the computed data, an entire translationally invariant Hubbard model can be constructed
and the result leads to hoppings as indicated in Supplementary Figure 17(middle right), from the banded Hamiltonian
Supplementary Figure 17(lower left). Lastly, the multiorbital Hubbard U is a matrix in this case and is visually
represented in Supplementary Figure 17(lower right).
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Supplementary Figure 17: (Upper left) For ` = 13, we see a region (labeled 1) where one Dirac band exists around
E = 0 (the figures in the main text are constructed here). There is also an extremely flat band at finite energy that
intersects the band in the region labeled 3. (This data is taken for m→∞ by random sampling the Brillioun zone
and φµ = π/2.) (Upper right) The dispersion in region 3 at W = 0.52t, the second red line in the upper left figure.
(Middle left) The integrated density of states ρBand(x, y) for the three band model. We can see a line of three states
tiled in an 8× 8 grid. (Middle right) A visual representation of the single-particle part of the multi-orbital Hubbard
model. The Wannier states are separated by their average energy −µ, 0, +µ, and they have hopping matrix
elements to neighbors and next-to-nearest neighbors on the diagonal. Each Wannier site is double degenerate and
the hopping matrix elements are Pauli matrices as color coded. (Bottom left) The Wannier Hamiltonian separated
into the 3 orbits (the red lines); we see that it is banded and dominated by the hoppings shown in the middle-right
figure. (Bottom right) The Hubbard U matrix for the multi-orbital model. The highest values of the Hubbard U
matrix comes from states continuously connected to flat bands in the upper-left figure that intersect the middle
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