
Magic angle semimetals
SUPPLEMENTARY INFORMATION

Yixing Fu,1, ∗ Elio J. König,1, ∗ Justin H. Wilson,2, 1, ∗ Yang-Zhi Chou,3, 4 and Jedediah H. Pixley1

1Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, NJ 08854 USA
2Institute of Quantum Information and Matter and Department of Physics,

California Institute of Technology, Pasadena, California 91125 USA
3Condensed Matter Theory Center and the Joint Quantum Institute,

Department of Physics, University of Maryland, College Park, MD 20742 USA
4Department of Physics and Center for Theory of Quantum Matter,

University of Colorado Boulder, Boulder, Colorado 80309, USA
(Dated: September 8, 2020)

Supplementary Note 1. MODELS

In this section we define the models which we analyze.
Semimetals in an incommensurate scalar potential. The tight-binding Hamiltonians of models dubbed “perfect”

spin orbit coupling (SOC) are given by

T̂SOC =
∑
r,µ

[
it

2
c†rσµcr+µ̂ + h.c.], (1)

V̂SOC = W
∑
r,µ

cos(Qrµ + φµ)c†rcr, (2)

where t is the hopping matrix element, σµ are the Pauli matrices, cr are electron annihilation operators, Q is our
quasiperiodic wave vector, φµ are the offsets of the origin of the potential, and W is the amplitude of the quasiperiodic
potential. In the two-dimensional (2D) case µ = x, y and in the three-dimensional (3D) case µ = x, y, z and r takes
values in the set of all lattice points on a square (cubic) lattice. The Hamiltonian for the π-flux model has the same
potential term in 2D. The hopping term is modified as follows

T̂π = −t
∑

r,µ=x,y

[c†re
iAµ(r)cr+µ̂ + h.c.], (3)

where we choose the gauge with Ax(r) = π/2 for all sites r on the square lattice, and Ay(r) = −(−1)rxπ/2. For the
chosen gauge, periodic boundary conditions require the lattice size in x direction to be even.

The spinless honeycomb (HC) lattice model is given by a Hamiltonian of the form

T̂HC = −t
∑
rA,i

[c†A(rA)cB(rA + di) + h.c.], (4)

V̂HC = W
∑
r,δµ

cos(Qr · δµ + φµ)c†rcr. (5)

The sum over rA is over one of the two sub-lattices, while r is over all points. The index i labels the three nearest
neighbors of rA, and di is the vector from rA to its nearest neighbor i. The vectors δµ are a choice of each particular

model and for numerics we choose δ1 = d1 = (2/3)x̂ and δ2 = d2 = −(1/3)x̂ + (1/
√

3)ŷ. The kinetic part of the
Hamiltonian for the one dimensional model with power law disperion1 is given in momentum space

T̂1D = −t
∑
k

sgn[cos(k)]| cos(k)|σc†kck. (6)

We assume σ < 1, this expression can be readily Fourier transformed to a tight binding model with long range hopping
(LRH). This yields a hopping amplitude

tij ∼ −2t[1− (−1)|i−j|] sin[π(|i− j| − σ)/2]Γ(1 + σ)|i− j|−(1+σ) (7)
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for |i− j| � 1 and Γ(x) is the Gamma function. The potential is

V̂1D = W
∑
r

cos(Qr + φ)c†rcr. (8)

Chiral Twisted Bilayer Graphene. The model we use for twisted bilayer graphene simulates the chiral version of
the continuum model2–4.

To write down the full model, we have first that

T̂cTBG = −t
∑
a=1,2

∑
〈ij〉

c†a,rica,rj , (9)

where 〈ij〉 indicates nearest neighbors on the honeycomb lattice and a labels the two layers. This model has four
Dirac nodes: two per layer. Furthermore, for reporting figures, we take t = 2.8 eV as it is for graphene.

We then couple the two layers with a quasiperiodically modulated tunnelling to simulate the effect of twisting

V̂cTBG = W
∑
r

∑
j

{
(c†1,A,r+ηj

c2,B,r + c†1,B,rc2,A,r+ηj ) cos[qj · (r + ηj/2) + φj ]

− 1

3
√

3

6∑
n=1

(−1)n(c†1,A,r+ηj+an
c2,B,r + c†1,B,rc2,A,r+ηj+an) sin[qj · (r + (ηj + aj)/2) + φj ]

}
+ h.c., (10)

where r is on the triangular Bravais lattice and ηj describe the vectors to connect nearest neighbors (B sites to A
sites) and they are given by

η1 = (0, 1),

η2 = (−
√

3/2,−1/2),

η3 = (
√

3/2, 1/2).

(11)

The vectors aj are the six nearest neighbors on the triangular lattice defined by a1 = η1 − η2, a2 = η1 − η3,
a3 = a2 − a1, a4 = −a1, a5 = −a2, and a6 = a1 − a2. Last, qj are defined by the twist angle

q1 = kθ(0,−1),

q2 = kθ(
√

3/2, 1/2),

q3 = kθ(−
√

3/2, 1/2),

(12)

where kθ = 2kD sin(θ/2) for twist angle θ and kD = 4π/(3
√

3) is the distance from the Γ point to K point.
To show how this reproduces the chiral model of twisted bilayer graphene, we can rewrite the above in k-space

V̂cTBG = W
∑
k

[
c†
1,k+

q1
2

σxc2,k− q1
2
eiφ1 + c†

1,k+
q2
2

(e−ik·a1σ+ + eik·a1σ−)c2,k− q2
2
eiφ2

+c†
1,k+

q3
2

(e−ik·a2σ+ + eik·a2σ−)c2,k− q3
2
eiφ3

]
f(−k) + w

∑
k

[
c†
1,k− q1

2

σxc2,k+
q1
2
e−iφ1

+c†
1,k− q2

2

(e−ik·a1σ+ + eik·a1σ−)c2,k+
q2
2
e−iφ2 + c†

1,k− q3
2

(e−ik·a2σ+ + eik·a2σ−)c2,k+
q3
2
e−iφ3

]
f(k), (13)

where ca,k = (caAk, caBk)T with a labeling the layer, A and B labeling the sublattice, and k is the lattice wave vector.
The function f is real-valued and has the form

f(k) =
1

2
+

1

6i
√

3

6∑
n=1

(−1)ne−ik·an . (14)

If we then concentrate near the K or K′ points (K = (− 4π
3
√

3
, 0) and K′ = ( 4π

3
√

3
, 0)), we have f(K) = 1 and f(K′) = 0.

Furthermore, K · a1 = −2π/3, K · a2 = 2π/3, K′ · a1 = 2π/3, and K′ · a2 = −2π/3. The result is that

V̂cTBG|near K ≈W
∑
k

∑
j

c†
1,k− qj

2

Tjc2,k+
qj
2
e−iφj , (15)
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Supplementary Figure 1: (left) Comparison of density of states ρ(E) of the lattice and continuum models at
W = 0.5 eV at an angle θ ≈ 8.958◦ approximated by taking the fraction kθ = 4π

3
11
122 , we see excellent agreement in

the miniband itself, and expected disagreement for higher energy bands beginning with the gap from miniband.
(right) Comparison of density of states near the critical value of W for the angle θ ≈ 8.958◦. For the lattice model
we observe this to happen for Wc ≈ 0.875 eV while for the continuum model we know this occurs at 0.930 eV. The
lattice model and the continuum model do not match at high energy, which results in a modified value of the critical
value of W . We see that the band is quite flat in either case, and just as in the W = 0.5 eV case, the higher bands
are at slightly different energies.

with

T1 = σx,

T2 = e2πi/3σ+ + e−2πi/3σ−,

T3 = e−2πi/3σ+ + e2πi/3σ−.

(16)

This exactly describes the continuum model as described in Refs.2,4 with AA tunnelling set to zero (the chiral limit).
If we also look at K′ we find that we obtain the same low-energy model up to a unitary transformation.

Importantly, this model has C3 symmetry in addition to C2 symmetry and T (time reversal). These symmetries
are contingent on eiφ1+iφ2+iφ3 = 1 (these phases pick an origin of rotation for the symmetry being applied), but are
otherwise built into the model.

To test our model against the continuum model, we now compare the density of states. In the continuum model,
there is one parameter that controls the physics α = W/(vkθ) where W is the tunneling strength between layers,
v = 3

2 t is the Fermi velocity. Therefore, the continuum model has the same physics at θ = 1.05◦ as for larger angles
such as θ = 8.958◦ as we are considering. At larger angles, the continuum model as an approximation for twisted
bilayer graphene breaks down due to effects such as band curvature, and the same is true of the lattice model in
this section, but we can observe density of state comparisons to see how the well the lattice model is capturing the
continuum model as a low-energy approximation. The results are in Supplementary Figure 1 and we see that the
miniband is captured quite accurately.

In order to simulate this system on finite sizes with periodic boundary conditions, we find that we need kθ = 4π
3
n
L

for integer n and system size L (for L2 Bravais lattice sites). Then, in order to fully capture an irrational number,
such as kθ = 4π

3
1
ϕ5 for the golden ratio ϕ, we can use the continued fraction expansion defined such that

[a0; a1, a2, . . .] = a0 +
1

a1 + 1
a2+···

, (17)

if we truncate this such that for instance, [a0; a1, a2,m] with 0 < m ≤ a3, we get a rational that approximates the
irrational number (m = a3 being quite a good approximation). Writing [a0; a1, a2,m] = n

L for integers n,L gives us

a system size L at which to simulate our system. For example, 1/ϕ5 = [0; 11, 11, 11, . . .] and we have [0; 11, 11] = 11
122

while [0; 11, 11, 3] = 34
377 (approximates of our irrational number for system sizes L = 122 and L = 377 respectively).
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Supplementary Note 2. STRUCTURE OF THE SPECTRUM AND SCALING OF THE DENSITY OF
STATES

In this section we discuss the numerical method used in the analysis of the spectrum and the finite size effects of the
method. We use the kernel polynomial method (KPM) to calculate the density of states ρ(E), which expands ρ(E)
in terms of Chebyshev polynomials up to an order Nc, and we use the Jackson kernel to filter out Gibbs oscillations
due to the finite expansion order. To determine the velocity v, in two-dimensions for example, we fit the low-|E|
asymptote ρ(E) ≈ ρ′(E = 0)|E| to extract ρ′(E = 0) ∼ 1/v2. Note that in 2D formally ρ′(E = 0) is not just a
single derivate due to the |E| scaling, but we use this notation to unify 2D and 3D; the latter it is simply a second
derivative. For details on the KPM technique see Ref. 5. We use twisted boundary conditions and we average over
random twists to reduce finite size effects. Now we discuss the effect of finite lattice size L and finite cutoff Nc on
ρ(E = 0) and ρ′(E = 0).

As an exemplary case we present results here for the “perfect” SOC and the cTBG models defined in the main
text. Results on the other models are similar and we also present results on the 1D model below. Supplementary
Figure 2 for the 2D SOC illustrates the dependence on L and Nc. For smaller Nc such as Nc = 212 = 4096, ρ′(0) for
all choice of L ≥ 55 almost overlap for W ≤ 0.515. For Nc = 214 = 16384, the ρ′(0) data converges as a function
of L only for L ≥ 144. Still, the L convergence is only valid for W ≤ 0.515. This demonstrates that the observed
convergence in L is strongly dependent on NC and therefore requires studying the scaling in NC for fixed L. In
Supplementary Figure 3(bottom row) we summarize similar features for cTBG showing Dirac nodes before and after
the “magic-angle” and within the metallic phase.

When fixing L and varying Nc, the semimetal-to-metal transition becomes sharper as ρ(E = 0) rises more abruptly
approaching a sharp step as shown in Supplementary Figure 2. This sharpening allows us to pinpoint the location of
the transitions accurately, in this case we find Wc = 0.525 ± 0.005 and W ′c = 0.551 ± 0.005. Importantly, the peak
of ρ(0) does not shrink as we vary L or Nc, providing strong evidence of the presence of the intermediate metallic
phase. In addition, we find that ρ′(0) does not saturate as we increase the expansion order, indicating within our
numerical accuracy that at the transition ρ′(0) diverges, similar to what was found in 3D6. From the above data of
ρ′(0) we determine the scaling exponent β defined by ρ′(0) ∼ |Wc −W |−β . We use ρ′(0) data obtained for Nc = 214

and L = 144 and we extract β from a log-log fit of 1/ρ′(0) versus |W −Wc|, see Supplementary Figure 4.

Dispersion and velocity. Here we demonstrate the identification of the kinetic velocity as obtained from the twist
dispersion with the parameter entering the low-energy asymptote of the DOS. We also compare these numerical
results with perturbation theory. We implement twisted boundary conditions by including a factor eiθ·r/L for each
real space field located at r and twist vector θ. Each component of θ takes value in (0, 2π) and we compute the energy
eigenstates E(θ) using exact diagonalization for various values of the twist θ. Such a change of boundary condition
has no effect on the bulk physics, but effectively moves the origin of the finite size induced momentum grid, so that
plotting the spectrum as a function of the twist shows a projection of the dispersion onto 1/Lth of the Brillouin
zone. Supplementary Figure 5 shows the twist dispersion for various models in one, two, and three dimensions, which
clearly demonstrates the dramatic flattening of the bands at the transition. These results where obtained for system
size L = 233 in 1D, L = 144 in 2D, and L = 21 in 3D. Using the twist dispersion we can estimate the velocity by
fitting the lowest energy band near 0 twist to a straight line. We compare the velocity as calculated from the twist
dispersion with the KPM result of the DOS and fourth order perturbation theory in Supplementary Figure 6, which
all agree well.

1D powerlaw hopping model. The parameter σ defined in equation (6) determines the behavior of the dispersion
relation near k = 0. This can be seen directly from the twist dispersion in Supplementary Figure 5. We present
detailed results for the 1D LRH model in Supplementary Figure 7. The DOS depends on σ by ρ(E) ∼ |E|1/σ−1

(Ref. 7), which is demonstrated in Supplementary Figure 7. In the following we present detailed results for σ = 1/3
and leave the full exploration of this 1D model for future work. Focusing on σ = 1/3 is numerically advantageous
since as we approach the transition the scaling ρ(E) ∼ |W −Wc|−β |E|2 allows us to use the second derivative of the
DOS ρ′′(0) to estimate β and we can compute ρ′′(0) accurately using the KPM. Notice that the power-law remains
constant when varying W in the semimetal phase, showing the 1D model is also stable to a weak quasiperiodic
potential. Upon approaching the transition we find ρ′′(0) displays a clear divergence with no sign of saturation as we
increase the expansion order (see Supplementary Figure 7), similar to the 2D model we have discussed above. We
find Wc = 2.05± 0.03 and from the power-law scaling ρ′′(0) ∼ |W −Wc|−β we extract β = 4.0± 0.8 for σ = 1/3, see
Supplementary Figure 4. Distinct from our results in 2D and 3D the transition in the 1D model is accompanied by
real space localization. To demonstrate this we calculate the IPR in real space and momentum space at zero energy.
The real space IPR becomes finite and momentum space IPR vanishes near the critical Wc. In addition, when the
momentum space IPR goes to zero the DOS becomes non-zero demonstrating that the generation of DOS is tied with
momentum space delocalization, similar to the higher dimensional models.
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Supplementary Figure 2: The DOS ρ(E = 0) and its derivative ρ′(E = 0) for 2D perfect SOC with Q = 2πFn−2/Fn
at various L and Nc near the semimetal-to-metal transition Wc = 0.525± 0.005 and back to the reentrant semimetal
W ′c = 0.551± 0.005. Top and middle left: Nc = 4096 varying L. Top and middle right: Nc = 16384 varying L. The
key is shared across the top four figures. Bottom: L = 233, varying Nc, with a shared key across the two. The insets
are the same plots with linear scale.

Supplementary Note 3. ANALYTIC RESULTS

This supplementary note is devoted to the summary of details on analytical arguments presented in the main text.

Perturbative calculation of velocity renormalization. We present the perturbative calculation of velocity renormal-
ization using the language of retarded Green’s functions,

Ĝ0(E) = [E + iη − T̂ ]−1, Ĝ(E) = [E + iη − T̂ − V̂ ]−1, (18a)

and are interested in diagonal components Gk,k0 with k = k′, only (e.g. for the DOS we only need ρ(E) =
−(1/π)Im

∑
k TrGk,k(E)). We define the self energy at momentum k by all diagrams which are G0(k, E) irreducible
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Supplementary Figure 3: The DOS (left and middle) ρ(E = 0) and its derivative (right) ρ′(E = 0) for cTBG at
kθ = 2πFn−5/Fn for different system sizes (left) and for different KPM expansion orders for L = Fn = 233 at various
Nc (middle and right) near the semimetal-to-metal transition Wc = 0.8725± 0.001 and back to the reentrant
semimetal W ′c = 0.892± 0.002.
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Supplementary Figure 4: Estimate of the scaling exponent β. Left: Extracting β from fitting (dashed lines) 1/ρ′(0)
in 2D and 1/ρ′′(0) in 1D for σ = 1/3 versus |W −Wc| on a log-log plot displaying a clear power law. For clarity we
have shifted the data of the honeycomb (HC) model so that it doesn’t overlap with the cTBG model. Right: β
estimate for the models we investigated in this paper, note that the estimate of β for the 3D Weyl model quotes the
result from Ref.6 and for the 1D long range hopping model we find β = 4± 0.8 for σ = 1/3.

and write

Gk,k(E) = [G0(k, E)−1 − Σ(k, E)]−1. (18b)

We expand about a given node Ki of the dispersion T (Ki+p) ' T (Ki)+h(Ki)(p) to leading order in p� 1/a. For
models which satisfy the symmetry constraints exposed in the main text (see also Supplementary Note Supplementary
Note 3) Σ(Ki + p, E) = EΣE + h(p)Σp to leading order in E, p. Henceforth, we choose the energy offset such that
T (K) = 0. Then,

Gk,k(E) = Z[E − (v/v0)h(k)]−1 with Z−1 = 1− ΣE and v/v0 = (1 + Σp)Z. (19)

In this section we evaluate the self energy to leading and, for some models, next to leading order in powers of W
and summarize them in Supplementary Table 1. A discussion of infinite order perturbation theory can be found at
the end of this note.

To illustrate the procedure we analyze the model of 2D perfect SOC for which the states at small k with Hamiltonian
H(k) = t(sin(kx)σx + sin(ky)σy) ' tk · σ are connected to the states at k ± Qêx,y and therefore to leading order
perturbation theory

Σ(2)(k) = (W/2)2
∑
±

1

E −H(k±Qêx)
+ x↔ y ' −E4α2 − tk · σ(2α2(1− cos(Q)) (20)




