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In the following supplemental material we provide details about the phase diagram, the magic-angle transition
along the semimetal lines, the machine learning algorithm we have used to support the phase diagram in text, the

perturbation theory at second and fourth order in the potential, as well as additional numerical results.
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I. ADDITIONAL PROPERTIES OF THE PHASE DIAGRAM

A. Main Phase Diagram
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Here we augment the phase diagram shown in Fig. 1 of main with several details. Focusing on Fig. S1(left), the
magenta line indicates an additional measure of the Anderson localization transition, using a neural net model as
elaborated in Section III. Critical eigenstates may appear localized and therefore are not straightforward to diagnose
with the IPR and conductivity alone (due to their anomalous scaling with system size). Thus, we use machine learning
to provide a conservative measure of the Anderson localized phase, which in certain regimes matches the IPR and
conductivity, but in other regimes of the phase diagram extends to larger values of W. In addition, the machine
learning approach identifies an area ranging from M = 4, W = 3 to M = 4.5, W = 4 in the phase diagram (the
darker region bounded by pink curve in Fig. S1) as critical, that is not identified by other observables. We leave the
details on the CM-AI phase transition for future studies.
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FIG. S1. (a) Full phase diagram with all measures used to diagonose phases and transitions. The magenta line shows the
boundary between delocalized or critical phase and localized phase at zero energy, as indicated by the neural net model. The
dark region, roughly extending from M =4, W =3 to M = 4.5, W = 4 is indicated as critical phase by the neural net model,
but not identified by any other observables. The dashed orange line inside the TT phase shows where the size of the gap centered
at £ = 0 is maximals and thus starts to significantly deviate from perturbation theory. (b) A cut of the phase diagram in
energy space represented by the yellow line in (a). Notice the multiple phase transitions, all driven by quasiperiodicity (W)
and the higher energy metallic nature. The pink curve represents the boundary to machine-learned, localized eigenstates.

The yellow line starting from M = 4.9 is expanded in the parameter space of W, E in Fig. S1(right). The cut show
an example of the very rich sequence of phase transitions, into-and-out-of metallic and topological phases at zero
energy, made possible by only increasing W at fixed M. The magenta curve show the boundary to localized states as
determined by the neural net model.

Inside the TT phase with intermediate W , IPR of lowest energy states demonstrate a region of critical scaling well
before entering CM phase. Such region of criticality can provide a coarse guide to the parameters (M, W) where flat
topological band discussed in the main text is developed. Intriguingly, the onset of such criticality can roughly be
traced by the dashed orange line (with O symbols) originating from M = 3, W = 0 in Fig. S1(a) where the size of the
gap centered at E = 0 no longer follows perturbation theory (see Section IV for perturbation theory and Section VI
for numerical calculation of the gaps). The eigenstates at the band edge appear critical, as measured by the IPRs,
for a range of W above such line (see Section VI).

B. Dependence on the quasiperiodic wavevector )

In the main text we have focused on a quasiperiodic wavevector Q = 27 F,,_o/F,, and linear system size L = F,,
where F), is the nth Fibonnaci number. The structure of the phase diagram is strongly dependent on the incommen-
surate value of () chosen. Here, we show the zero energy density of states that probes insulating, semimetallic, and
metallic parts of the phase diagram (but cannot discern between delocalized and localized wavefunctions) in Fig. S2
for Q = F,,—3/F, (a) and Q = F,_4/F, (b). With these smaller values of @, the semimetal-to-metal magic-angle
transition along M = 2 happens for smaller values of W. Qualitatively, this behavior is captured by the perturbation
theory near W = 0, where it shows the Dirac cone velocity v is renormalized more strongly for smaller values of Q.
However, for even smaller @), higher order perturbation theory is required to see the velocity renormalizing down to
0. On the other hand, the phase boundary rooted from M = 4 and W = 0 along the NI-to-TI phase boundary can
be predicted well by the perturbation theory (shown as a red line in Fig. S2).

C. Chemical Potential dependence of o,

The Chern number is directly determined by the Hall conductivity o,,. While we use p(0) to accurately locate
phase boundaries, the numerical calculation of o, at large system sizes has more computational complexity. However,
ozy can be used to distinguish trivial and topological states and locate where the Chern bands are in energy. Here,
we show an example of a color plot of 0, at a fixed M = 4.2 and varying the Fermi energy Er and disorder strength
W, see Fig. S3. The emergence of a topological phase after the collapse of the (lowest energy) trivial band gap can be
seen clearly. In addition, our perturbative result (shown as the red lines) is in excellent agreement with the numerics
in locating these phase boundaries for 0 < W < 2.
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FIG. S2. Phase diagram determined from density of states at Er =0 for Q = F,,_3/F, and Q = F,_4/F,. The red
line shown is the result of fourth order perturbation theory used to determine the location of the NI-to-TT transition from the
vanishing of the renormalized topological mass M. The perturbative result agrees well with the numerics up to W = 1.
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FIG. S3. Finite energy topological phase diagram. The Hall conductivity o4, at various Fermi energies EFr and quasiperi-
odicity W. The red lines are the perturbation theory prediction of gap size.

II. MAGIC-ANGLE TRANSITION

The semimetal at M = 2 is stable with a velocity (calculated from the DOS) that vanishes like o ~ (W.(M =
2) — W)#/2 where W.(M = 2) = 1.424+0.02 and 3 = 24 0.3. This is demonstrated in Fig. S4(a) where 9 vanishes
when p(0) rises. Additionally, the wave functions are localized in momentum space when W < W.(M = 2), and
delocalized in momentum space when W > W.(M = 2) (as indicated in Fig. S4(b) by Zj being L-independent and
T ~ 1/L?, respectively). When the real space IPR is L-independent and the resistivity increases with L and N,
there is a localization transition with W4 (M = 2) = 1.50 £ 0.03, indicating a small but finite CM phase.

III. MACHINE LEARNING THE LOCALIZATION TRANSITION

In the present model, we found it challenging to pinpoint the Anderson localization transition using conductivity
and the inverse participation ratio due to a large number of critical states that can appear localized by some metrics
but not others. Therefore, we have supplemented this analysis with a machine learning classification of the single
particle wavefunctions.

Machine learning is a class of methods where a non-specialized program can be used to perform a specific task
when supplied with an abundance of data. Many machine learning techniques have been applied to various aspects of
physics®' 3. In this work we used Convolutionary Neural Networks (CNN) to distinguish whether a wave function is
localized or extended. We train the neural network on a set of wave functions whose localized nature can be easily and
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FIG. S4. The magic-angle transition for the semimetal line M = 2. (a) Renormalized velocity v/v(0) and the resulting
finite density of states p(0) at the transition, extracted from p(FE) that is calculated using KPM method with system size
L = 144, Chebyshev cutoff N. = 2*°. See Fig. S7 for further discussion on obtaining ¥. (b) These plots indicate the appearance
of a critical metallic phase 1.4 < W < 1.5 inferred from both the resistivity pz, and the scaling of the momentum- and real-space
IPRs. paq is calculated using Kubo formula (see main text) with KPM method. The L-dependence of the IPRs is fitted from
lowest energy eigenstates obtained using Lanczos method for L =89, L = 144, and L = 233 to a power law form Zo ~ 1/L7«|
and 7, is shown as the right vertical axis.

unambiguously determined. Such a neural network automatically applies to all other points in the phase diagram,
determining the phase boundaries efficiently and objectively.

A neural network consists of a massive number of nonlinear functions and linear transformations, usually as several
“layers,” to replicate any task that distills information from data. Practically, such a combination can be tuned to fit
any mapping. Hence, as long as a concrete definition of the task to be executed is available, we can use labelled data
as an example to tune the neural network until it replicates the task. Such a process is called “training,” and can be
calculated efficiently using modern computers.

In the present context, the problem that we want the neural network to solve is to distinguish localized wavefunctions
from extended ones. This task can be thought of as a mapping from the space of all wavefunctions to a binary result
of localized or extended. Using a set of wavefunctions labelled in advance, we can train the neural network to capture
the relation between wavefunction data and the prediction of a localized phase. Once the training is finished, we
can use the neural network model to classify a much larger dataset of wavefunctions, and map out a detailed phase
diagram.

One crucial but more technical component of deep learning is the choice of the form and organization (i.e., “archi-
tecture”) of the nonlinear functions used to fit>*°. In this work, we use a simple version of CNN. The wavefunction
classification task is somewhat analogous to figuring out whether the image includes a dog or cat, which is a classical
application of CNN. The CNN architecture makes use of a convolution operation prior to applying the nonlinear
functions. The convolution operations effectively scrambles but preserves the information at various locations of the
input data, and hence makes the model “translational invariant”, i.e. the location of the feature does not affect
the output. Such translational invariance allows the neural net model to treat critical and/or localized structures at
different locations in the same way.

The neural network methods of machine learning usually suffer from over-fitting that harms the predictive power
of the model. Simple and conventional methods against over-fitting including adding regularization terms, use of
drop-off layers® and so on. These methods are practically efficient and sufficient for our purpose.

A summary of the architecture we have used with a convolutionary neural network and drop-off layers is shown
in Fig. S5. We experimented with a few different hyper parameters of the CNN architectures, and the model yields
similar results. Hence the neural net model we have used is not a result of fine tuning. The robustness across different
setups is likely because the localization feature is prominent and less ambiguous as opposed to typical computer vision
tasks.

The training set is constructed in two different ways:

1. We look at the images to judge whether each wavefunction is clearly localized or not. The cases in which we
are unsure are discarded from the training set. To minimize the affect of systematic bias caused in labelling
the training set, we go through wavefunctions at several runs where each set is drawn randomly from the entire
collection of wavefunctions and shuffled. Hence, the mislabelling can be considered as a random variation that
is independent from the features that do not affect decision boundaries.
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FIG. S5. Schematic diagram of the neural network structure used for localization detection. For convolution
layers, we apply a convolution operation over a small window to get a data point in the next layer. Max-Pool layer simply
takes the maximum of each window to reduce the model size. We also add batch-normalization and dropout layers before and
after Max-Pool, but they are not shown here as they do not alter the overall architecture.
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FIG. S6. Comparing the IPR with the machine learning outcome. (a) Shows an example of the neural network output
for M = 2.7, given as the probability of a state being localized [P(loc)] or extended [P(ext)]. The summarized results are shown
for M = 2.7 (b) and M = 4.9 (c), with comparison against KPM and IPR results. The difference between the two probabilities
measures how confidently the model can distinguish localized or extended. Also shown in the figure with the magenta strips
is the phase boundary determined by the conductivity, which indicates a transition near W = 2.25 for M = 2.7, and W = 3.4
for M = 4.9. Although the three different methods match quite well for M = 4.9, for M = 2.7 the IPR shows strongly critical
behavior up until W = 2.5, well after the conductivity appears to vanish. Such critical behavior is detected by the neural net
model. For W between 2.3 and 2.5 the IPR shows a strong L dependence and the neural net model predicts an extended phase
with high confidence. For a range of W larger than 2.5, the IPR shows a weak L dependence across different system sizes,
while in the neural net model P(loc) and P(ext) are quite close to each other.

2. We choose W > 6 for localized wavefunction examples, and sample W = 0 at various values of M for extended
wavefunctions.

The training set of method 2 does not include any of the critical wavefunctions in the CM phase. As a result,
the CNN model identifies the critical phase as localized, producing a phase boundary in line with SM/TI to CM
transition. This result can also be replicated using the training set from method 1 if we only include extended and
fully localized wavefunctions. However, with method 1 we can instead label a dataset such that the non-localized
label includes critical wavefunctions to provide an interesting complement to the KPM results and is hence included
in the main results of Figure 1.

The phase boundary obtained from machine learning between localized and non-localized wavefunctions roughly
traces the CM-AI phase boundary provided by the conductivity computed with the KPM for M between 3.8 and 5.4,
but it provides a slightly different boundary elsewhere. For M < 3.8, the machine learning result labels regions as
critical that have a conductivity that looks localized (i.e. 0, is vanishing with increasing N.). We further investigate
the nature of this region using the inverse participation ratio (IPR) in real and momentum space bases, see Fig. S6.
The IPR in this region shows critical behavior that transits into a localized phase at a point that is hard to accurately
determine. The machine learning result provides a conservative estimate of where the criticality ends and localization
sets in.

In summary, our use of the machine learning method in the present context is to provide an additional measure of



the non-trivial phase boundaries that have a lot of structure. We then use conventional methods (conductivity and
the TPR) to validate the physical nature of the phase boundaries.

IV. PERTURBATION THEORY AT SECOND AND FOURTH ORDER

In this section, we provide additional details on the perturbation theory at second and fourth order that correctly
captures the renormalization of the topological mass (to describe phase transitions in and out of the TI) and the
velocity in the SM phase.

We begin by considering the single-particle Green function

Go(w) = [w = ho()] ™", G(w) = [w = ho(w) + V]! (S1)
and use Dyson’s equation
Gk,w) ™' =w—ho(k) — B(k,w) (S2)

where X(k,w) is the self-energy at momentum k including all Gy (k,w) irreducible diagrams. Close to the SM phase
near M = M; = 2 or M = M, = 4, we express the Hamiltonian in the low-energy limit around the corresponding
Dirac node K as ho(K+q) = vq- o+ (M — M;)o, and similarly expand the self-energy to obtain X(k = K + q,w) =
wXgog+X,q -0 + 3,0, (where oy is the 2-by-2 identity matrix and the o, , , are the Pauli matrices). We define the
quasiparticle residue Z, the renormalized topological mass M. and renormalized velocity © such that the resulting
Green function in the low-energy limit has the form

Z

Gk=K+q,w)= — —. (S3)
w—0q-0— Mo,
Then using g, ¥, and 3, from ¥(k,w) we can express Z, M and ¥ as:
Z7'=1-%g, (S4)
M—M;=(M-M+%.)Z71, (S5)
v=v(l+3%,/v)Z7, (S6)

To calculate ¥(k,w), we treat V(r) perturbatively. In momentum space, V is a delta function connecting k to
k + Qz and k + Qy. Hence, at second order the self energy is

2@ (k,w) = (W/2)° > v (S7)

A ho(k + Q1)
Near M =4, k = M + q with M = (7, 7), this yields
2
@_ W
=@ =
B - (59)
W2 (4 — M)3(1 +cosQ)
n@ - 7
P 5 D3 v, (S9)
4 D2 )

where Dy = (4 — M)? +2(3 — M)(cos @ — 1) is the common denominator that is always positive for M > 3. Observe

that the numerator of 29) is also always negative for M > 4, and Eg) is always negative. Hence M is renormalized

to be smaller as W increases, predicting a critical W where M (W) = 4 where TI to CM transition occurs. On the
other hand, the direction of velocity renormalization is not obvious from the second-order perturbation theory, and
indeed we can only predict the velocity to be renormalized to 0 at fourth-order perturbation theory. This is indicative
of scattering off a single Dirac cone, where due to spin selection rules it requires a larger momentum exchange to
induce intranode scattering.



The fourth-order perturbation theory includes all of the diagrams that connect the Dirac node to points in the
Brillouin zone that are 2¢) Manhattan distance apart and then back. The fourth order contributions to X (k,w) are

W4
s = - (F15M* 4 1660M° + (—36]° + 206) — 295) cos(3Q) — T32M >+
(2M (M (24M — 221) + 697) — 1497) cos(Q) + (2M (M (13M — 115) + 356) — 770) cos(2Q)+

6(M — 3) cos(4Q) + 1522M — 1260)/D,  (S11)

NS %4(—10M5 + 138M* — 806 M3 + 2509M2 + (2M (2M (M (11M — 134) + 622) — 2615) + 4212) cos(Q)+
2(M(M(3M(3M — 37) + 538) — 1208) + 1048) cos(2Q) + 2(451 — 6M (M (3M — 26) + 76)) cos(3Q)+
5(M — 3)(3M — 8) cos(4Q) — 2(M — 3) cos(5Q)) — 4155M +2904)/D,  (S12)

where D, is the common denominator

Dy = (=2(M —3) cos(Q) + (M — 6)M + 10)*(—4(M — 2) cos(Q)+
(M — 4)M + cos(2Q) + 7)(—2(M — 3) cos(2Q) + (M — 6)M +10) (S13)

With the fourth-order correction, we find that the perturbation theory agrees very well with the numerical results as
demonstrated in the main text as well as Figs. S2 and S3. However, fourth order perturbation theory for the velocity
renormalization only qualitatively predicts the magic-angle transition where v = 0, but at a much larger W than
indicated by numerical results. It is natural to expect that this is due to the single node nature of the bandstructure
at M = (m, ) (all of the scattering is intranode). We anticipate a better prediction of magic angle transition may be
achievable only at even higher orders of perturbation theory.

Using exactly the same procedure we can consider the case of M near 2, which is the SM line that divides the two
TT regions with opposite sign in the quantum spin Hall effect. From a symmetry point of view it is not surprising
that the M = 2 SM line is W-independent. This is indeed the case from the perturbation theory, as up to fourth
order we have 222) =0and M = M = 2, hence there is no topological mass renormalization. That means starting
from such a SM phase, quasiperiodicity is not driving it out of SM due to curvature in the phase boundary. At second
order the velocity only reduces but does not go to zero and the renormalization of © is only due to the quasiparticle
residue Eg) = —csc(Q/2)?, while 21(,2) = 0. This can be understood as follows, at M = 2 the two Dirac cones are
at X = (7,0) and Y = (0,7) and being separated by 2r Manhattan distance in momentum space, second order
perturbation theory will not be able to induce internode scattering. Whereas, at fourth order the two Dirac cones
can be connected by 2Q) hops in the Brillioun zone. Thus, only fourth order perturbation will be able to predict a
vanishing velocity and a magic-angle transition. In line with this reasoning, the renormalized velocity © up to fourth
order is

b =@w+2P +3M)/z (S14)

Here 21(12) vanishes, and the fourth order term
4

224) = Il/l(; (1 +4cos(Q)) cse(Q/2)*v (S15)

is negative only when @ > cos~!(1/4) ~ 1.82. Only in this regime does the perturbation theory predict a magic-angle
transition. For example, at Q = 27 F,_5/F,, it predicts © to vanish at Wb = 4sin(Q/2)(—=1 — 4cos Q)" /4 ~ 3.16.
This fourth order perturbative result WC(4) is an overestimate of the true critical W,, and thus a more accurate
prediction will require higher order perturbation theory. For smaller @ such as Q = 27 F,_3/F,, the velocity can
never reach 0 at fourth order in perturbation theory. Hence, the magic-angle transition is an even higher order effect
than that of Q = 27F,,_o/F,. In other words, the reduction of the value of @ requires higher order in perturbation
(more @ “hops”) to capture internode scattering.

V. FINITE SIZE EFFECTS
A. Density of states and conductivity

In this section we discuss the finite size effects in the KPM calculations of the density of states and the conductivity.
The numerical calculation puts the model on a lattice with a linear size L, while the truncation of the polynomial
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FIG. S7. Finite size dependence of the density of states and conductivity. (a) The N. and (b) L dependence of
p(E = 0) for M = 2 as a function of W. As the expansion order N is increased, the rise of p(E = 0, W) is much more steep
right before the transition. The inset shows p'(E = 0), computed as p’ = N.p, in the regime this is N. independent we can
extract the renormalized velocity ¥ from this scaling. The L dependence is very weak for N. = 2'3. (c) The L dependence of
Ozy and o, as we fix N, = 2'° for the cut M = 3.3. These results demonstrate that we are close to converged in L and the
largest finite size effect in the data stems from the finite KPM expansion order.

expansion at expansion order N, in the KPM controls the energy resolution. As N, and L increase (attempting to
approach the thermodynamic limit), the observables we calculate using the KPM (i.e., the density of state p(E) , the
resistivity ps., the longitudinal and Hall conductivities 0., and o,y) all become sharper, allowing us to accurately
determine the critical points. In addition, we average over more than 200 samples with random twisted boundary
conditions, allowing us to suppress finite size effect rooted from finite L and to avoid emphasizing results from any
specific choice of phase in quasiperiodicity.

As an example, we show in detail the N, and L dependence near the SM-to-CM transition at M = 2, see Fig. S7(a,b).
For fixed L = 233 and varying N., we see that the behavior of the density of states sharpens near the transition,
demonstrating that the transition occurs between W = 1.46 and W = 1.48. Also we see that at least for density of
states at zero energy, taking L = 144 is adequate for N, up to 2!3, as the p(E = 0, W) curve does not change at
all as we vary L above 144. To determine the renormalized velocity ¥ from the density of states we use the scaling
of the SM p(E) ~ 972|E| to obtain the scaling with the KPM expansion order p(0) ~ 9=2(1/N,). Here, we have
used the fact that the infared low-energy scale (§F) induced by the finite KPM expansion order is related to N,
via 0F = wD /N, where D is the total bandwidth of the Hamiltonian. As shown in the inset of Fig. S7(a), we find
excellent data collapse of N.p(0) that we use to extract ¢ in the SM phase.

In the main text, we have shown examples of the N, dependence of the conductivity and the resistivity, where a
larger cutoff leads to a steeper change in the pg, (W) curve near the critical W, and a longer range of W where oy,
is quantized. In Fig. S7(c) we show the L dependence of the longitudinal and Hall conductivities near W, as we vary
L but fix N.. In this data we see that for L. = 89 there is a slight variation from the other values of L, but above
L = 144 the 0., (W) and 0,,(W) are not changing at all for the different L’s. Again this justifies the use of L = 144
for N, up to 2! to calculate conductivity as in the main text.

B. Inverse Participation Ratio

The inverse participation ratios (IPR) reflects the structure of the wavefunction in a particular basis and is commonly
used to study Anderson localization transitions. When the IPR is independent from system size, the system is localized;
when the IPR scales as 1/L? where L? is the volume of the d-dimensional lattice, the system is extended. When the
IPR vanishes with a power law less then d, the wavefunction is critical. To consistently assess the behavior of the
IPR, we calculate the IPR (in both real and momentum space bases) for each combination of parameters at L = 55,
89, 144 and 233. Then we fit the log of the IPR log(Z) vs log L, and extract the slope, which is the power law. We
demonstrate some examples of such fitting in Fig. S8. The results of the IPR scaling shown in the main text and in
Fig. S11 are all computed in this way.

VI. EXTRACTING THE SPECTRAL GAP

The size of the insulating gap corresponds to the topological mass M; and for the topological insulator to metal
phase transition the power-law scaling of the gap size allows us to extract critical exponents at the T1I to CM transition
as described in the main text. Here we elaborate on the details for extracting spectral gap.
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FIG. S8. L dependence of the IPR Here we demonstrate two examples of how we determine 7, for IPR data in the basis
a =z, k, where I, ~ L77 for M = 2.7 (a) and M = 3.3 (b). We take a linear fit for log I}, or log I, over log L, then the slope
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FIG. S9. Extracting gap from KPM. Simply choosing a threshold £ makes controlled approximation of gap size in KPM,
and matches Lanczos result at large N, limit. a) Density of state p(E) in log scale. The green line marks the threshold e = 0.001
used for determining A using KPM. The crossing point between the green line and p(F) curve marks the upper end of the gap;
while the lower end is determined similarly. b) The distance between half of the gap size determined by KPM with different
cutoff (An, /2) to the lowest energy state determined by Lanczos (Eianc) as a function of 1/N.. At large N, limit, the difference
approaches zero. For N. = 8192 as an example, the KPM calculated A is accurate up to le — 3.

The size of the insulating gap centered at E = 0 is most efficiently calculated by extracting from DOS data in

general. We first use the integral of density of state n(E7, Eq) = E}i * p(E)dE to find a positive energy Epax such that
n(0, Emax) is smaller than 1/2L2. Then the range inside (—Eyax, Fmax) with p(E) below the chosen threshold ¢ is

the gap. The gap size A is the length of the range. Fig. S9 (a) illustrates how the gap is extracted.

In general, KPM involves a broadening of ., and hence the choice of threshold would depend on N.. However, as
long as 1 >> ¢ >> 1/N,, the numerical result of A from KPM with N, provide an estimation approximately good up
to 1/N.. We can also use Lanczos method by setting shift-invert factor o to be KPM estimated gap edge to obtain
the accurate energy of lowest energy state above E = 0, which is half of gap size. Fig. S9(b) demonstrate that the
difference between KPM estimated gap size and the accurate Lanczos result. As N, approaches infinity, the differnce
vanishes.

In fact, for W very close to the TI-CM transition, Lanczos method become more efficient than KPM to accurately
determine A. Using shift-and-invert Lanczos with shift factor ¢ = 0, we can find the minimum of the lowest energy
band. Here, we demonstrate a few examples of the gap size extracted using the Lanczos method with various L in
supplement to the gap size extracted in the main text using KPM. As shown in Fig. S10(a-c) the result is essentially
L independent.
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FIG. S10. Vanishing of the spectral gap. The gap size as a function of W for M = 2.4 (a) and M = 3.0 (b) with various
system sizes L. (c) is a more zoomed in view of the M = 3.0 cut near the transition. In the second row, we show an example
of how the combination of critical exponents vz is extracted from the spectral gap data. For a range of choices of W., we fit
log A against log(W. — W) in the range when W, — W is under 0.015 and A > 0.001 with a straight line. This data is shown in
(d). Then we find the point where the root mean square error (RMSE) as shown in (e) of the linear fit is smallest as our best
estimation of W,, where the slope is then vz. For these results, our best estimate of vz = 1.0 + 0.1, with W, = 2.106 £ 0.001.

A. Critical Exponents at the topological insulator to metal phase transition

The critical exponents at the TI-to-CM phase transition can be extracted from the gap size, as quoted in the main
text. Here we demonstrate this process in more detail. The A is calculated using Lanczos here, as we focus on a
very small range of parameters, making Lanczos more efficient than KPM. We first estimate the critical quasiperiodic
strength W, from the density of states data. Near the estimated W, we consider a range of W, and fit log(A) over
log(W, — W), see Fig. S10(d). Then we identify the range of W that log A is linear to log(W, — W) and use least
square fit. The best W, is picked according to the goodness of linear fit, here quantified with root mean square error
of the fit, see Fig. S10(e). The slope of the best fit is then vz, where A ~ (W, — W)¥#. For some cases this critical
exponent is difficult to determine accurately because of the very fine phase diagram structure. For a few fixed M cuts
shown in the main text, including M = 2.4, M = 3.0, M = 3.3 and M = 3.8, we find vz near 1.0. To be precise,
for M = 2.4 we have vz = 1.06 £ 0.1; for M = 3.0, vz = 1.00 & 0.1; for M = 3.3, vz = 0.95 £ 0.2; for M = 3.8,
vz =1134+0.15

B. Gapsize and IPR

Another interesting feature is the boundary where our perturbation theory works to determine the gap size. The
perturbation theory expression of the gap size gives a qualitatively correct prediction of the dependency of A on W,
but the trend has a turning point at some finite W after which it no longer follows the perturbation theory. This is
when the lowest band is no longer clearly the topological band, but mixes with other minibands nearby in energy due
to the quasiperiodic potential. We show that the IPR of the lowest energy state changes dramatically at the same W
where the gap size turns down as shown in Fig. S11.
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FIG. S11. Properties of the IPR. (a) Phase diagram of the momentum space IPR of the lowest eigenstates. The red circles
mark where the gap size A(W) changes its trend from increasing to decreasing as determined by the location of the maximum
in A’(W). The cuts M = 3.3 (b) and M = 3.8 (c) show the non-trivial L dependence of the IPR in both real and momentum
space start to dramatically change when A(W) begins to turn downward.

VII. DISPERSION RELATION, EFFECTIVE MASS AND BERRY CURVATURE

In this section, we discuss our calculation of eigenstates and wavefunction, and hence dispersion relations and Berry
curvature. The twisted boundary condition we implemented, ¢, — tuew“/ L effectively shift momentum k by /L
. Without a quasiperiodic potential, this corresponds to a trivial folding of the original energy disperion F(k) such
that E,(0) = E(2rn/L+0/L) for band n in the Brillouin zone defined by the supercell of size L x L. In other words,
6/L is the momentum in the mini-Brillouin zone of the superlattice made of L x L supercells.

To calculate eigenvalues and eigenstates in the interior of the spectrum, we use shift-invert Lanczos method with
a shift factor 0. The spectrum is quite dense, so we can only accurately calculate eigenstates near a hard gap in
order to have a definite band index for each state as we go to a large system size. Hence, o is set to be the energy of
the desired band edge next to the gap, which can be accurately located using DOS calculated with the KPM. Such
a shift factor allows fast convergence to the first n eigenpairs with definite band indices, as long as the E; — o for
all # < n is less than the gap size. The computational complexities in both memory and time are dominated by the
Cholesky decomposition step in shift-invert Lanczos; whereas the iterations over the Lanczos Ritz vectors to increase
the accuracy of eigenvalue and eigenvector calculation are fast. Hence we can always set the error tolerance of Lanczos
to be at least 1/100 of the bandwidths of the folded bands.

A. Effective mass

One additional measure of band flatness to consider is the effective mass of the lowest band. We define an effective
mass m* by the expansion of the energy dispersion about its minimum E(q) = F(0) + 272* q? + - --. Numerically, m*
can be obtained through a quadratic fitting of FE,,(0) near @ = 0, where the n indexes the first, folded band above
E =0 (Fig. S12(a), for example). The effective mass can also be obtained, perturbatively, from the pole of the Green
function Eeg(q) = (M + q/2m*) where m* = M/(202). At fourth-order, m* ~ 10°(1/t) at W = 3t, indicating
that the QP is flattening the topological bands; our numerics (the blue solid line in Fig. S12(b)) show this effect is
even more drastic [Fig. S12(b)].

B. Edge states

For finite size calculation, (twisted) periodic boundary conditions eliminate all edge contribution and keep only the
bulk. With open boundary conditions, the edge states can be observed, but we no longer have access to any 6 # 0.
Here, we use twisted boundary conditions only in the z-direction but open boundary conditions along the y-direction,
so that we can see the dispersion of the edge states as we vary 0,, as clearly demonstrated in Fig. S12(c).

C. Berry curvature of folded bands

To clearly characterize the topology of the folded bands, we calculate the Berry curvature directly by replacing
momentum with the corresponding twist in the boundary condition. We dived the minizone of size (27/L)? into a
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FIG. S12. Twist Dispersions. (a) Using the twist dispersion to obtain the effective mass m*. The red curve is the quadratic
fitting result to estimate m*. The figure shows an example for M = 4.0, W = 0.4. (b) The effective mass obtained from fitting
twist dispersion (mg,) and from perturbation theory (mge), compared with gap size. The vertical line marks the W where
we scrutinize flat topological bands in the main text. (c¢) Twist dispersion with open boundary conditions in the y direction
and twisted boundary conditions in the x direction. The color corresponds to the location of the eigenstates along the y axis.
The red and dark blue states in the bulk gap are the edge states.

L=13 L=34 L=89 L=233

FIG. S13. Berry curvatures. The Berry curvature of of the first band above the hard gap near E = —0.5. The samples
shown are at W = 1.01541, M = 4 and L = 377, i.e. at its peak flatness (see Fig. 3(b) of the main text). The first row are
system sizes in the sequence of L = F;, with odd n, and the second row for even n. For L = 55 and L = 89, Berry curvature
have clear peaks; while larger L’s see flatter Berry curvature.

grid of size Ny x Ny and evaluate |4, (0)) with Ny = 40, where n is the band index starting from the band edge
near a large gap. We follow Ref.°” to obtain a manifestly gauge invariant calculation that always sum to integer
valued Chern number. Note that the method requires the folded band to be gapped, so for example, at small W the
calculation will fail. In addition, using Lanczos to compute the eigenstates leaves a phase ambiguity that may change
for each calculation. When calculating the Berry curvature on any plaquette, each of the four |¢,,(0)) surrounding the
plaquette is used twice and it is important to use the same [, (0)) to be consistent. At the same time, calculations
for different plaquettes are mutually independent, allowing for a straightforwardly parallelized calculation. This can
be done either by saving |¢,,(0)), or carefully setting the initial vector and the random seed for Lanczos.

Some examples of the calculated Berry curvature are shown in Fig. S13. For each case, the Berry curvature in
a given band sums up to the Chern number, which is used for determining the topology of the band structure in

main text. To characterize the fluctuations of Berry curvature, the normalized standard deviation of Berry curvature,
defined as

S () V02 (0) = (S 2(0))
0. 35 2.(0)

(S16)

2
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