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Critical properties of the measurement-induced transition in random quantum circuits
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We numerically study the measurement-driven quantum phase transition of Haar-random quantum circuits
in 1 + 1 dimensions. By analyzing the tripartite mutual information we are able to make a precise estimate
of the critical measurement rate pc = 0.17(1). We extract estimates for the associated bulk critical exponents
that are consistent with the values for percolation, as well as those for stabilizer circuits, but differ from previous
estimates for the Haar-random case. Our estimates of the surface order parameter exponent appear different from
those for stabilizer circuits or percolation, but we cannot definitively rule out the scenario where all exponents
in the three cases match. Moreover, in the Haar case the prefactor for the entanglement entropies Sn depends
strongly on the Rényi index n; for stabilizer circuits and percolation this dependence is absent. Results on
stabilizer circuits are used to guide our study and identify measures with weak finite-size effects. We discuss
how our numerical estimates constrain theories of the transition.
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Characterizing phase transitions in the dynamics of
nonequilibrium quantum systems is a key open question in
quantum statistical physics. So far, nonequilibrium phase
transitions have been studied primarily for isolated quantum
systems [1,2] and for steady states of dissipative systems
[3,4]. One much-studied case is the many-body localization
transition [2], which can be seen either (i) as a dynamical
transition at which thermalization slows down and stops as a
parameter (e.g., the disorder strength in a spin chain) is tuned
or (ii) as an entanglement transition at which the many-body
eigenstates of the system change from volume-law to area-law
entangled. Recently, a different type of entanglement transi-
tion was discovered [5–7] in the steady-state entanglement of
the states produced by individual quantum trajectories [8–11]
of a repeatedly measured quantum many-body system. As the
system is measured at an increasing rate, this single-trajectory
entanglement goes from volume law to area law [see Fig. 1(a)]
[6,7,12–18].

A measurement-driven transition is expected for quan-
tum chaotic dynamics whether temporally random [6,7] or
Hamiltonian [19]. Current studies have focused on quantum
circuits acting on an array of qudits (of local Hilbert space di-
mension q); these are believed to be generic models of chaotic
quantum dynamics [20–25]. In specific cases, analytic results
(or large-scale simulations) exist. For the Hartley entropy (i.e.,
rank of the reduced density matrix) and in the q → ∞ limit,
mappings to percolation have been found [5,6,14,17].

For stabilizer circuits, efficient classical simulations
[7,13,16,26] have been implemented in one-dimensional
systems with q = 2. All three methods agree (within
numerical precision for the stabilizer circuits) on the order-
parameter and correlation-length critical exponents (respec-
tively η and ν) at the transition; all of them, likewise,

predict that the steady-state Rényi entanglement entropies,
S(A)

n = (1 − n)−1 log2 Tr ρn
A (where A denotes a contiguous

subsystem of length L in a one-dimensional system, and ρA

its reduced density matrix) should scale as Sn ∼ αn ln L. For
stabilizer circuits and in the large-q limit, α is independent of
n. However, the value of α seems to be different in each of
these solvable cases, suggesting that in some respects these
are distinct critical phenomena.

The present Rapid Communication analyzes the physically
relevant, but analytically intractable, limit of Haar-random
circuits with q = 2. Some numerical results exist for this
case [6,14,16] but are inconclusive because the values of the
critical exponents are sensitive to the estimate for the critical
point and choice of scaling ansatz. We circumvent these
issues by studying the tripartite mutual information (TMI),
which is found to have minimal finite-size drifts and allows
us to reliably locate the critical point with minimal scaling
assumptions on small system sizes. The TMI is finite at the
critical point, vanishes in the area-law phase, and diverges
in the volume-law phase; thus, curves for different sizes
cross at the critical point, allowing one to locate it reliably
[13,27,28]. Having located the critical point, we estimate
critical exponents; the correlation length exponent ν and the
bulk anomalous dimension η [26] (described below) for
the Haar case are close to or equal to those for percolation.
The surface critical exponent, however, appears to differ from
both stabilizer circuits and percolation, suggesting that the
Haar model lies in a separate universality class [29]. The
Rényi entropies Sn (for n � 1) appear to be logarithmic at
the critical point, but with a strongly n-dependent prefactor:
the entanglement spectrum has a nontrivial critical structure.
To guide our study of Haar-random circuits, we analyze small
stabilizer circuits using the same methods: Our results for
small sizes reliably predict the exponents found from much
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FIG. 1. (a) Phase diagram with pH
c and pP

c marking the separa-
tion between volume-law and area-law entanglement in the Rényi
entropies n � 1 and n = 0, respectively. (b) Depiction of the model:
Blue rectangles represent two-site entangling gates and the green
circles denote local projective measurements that are performed
with a probability p. (c) The geometry used to compute the TMI,
partitioning the system with periodic boundary conditions into four
equal-length segments. (d) The setup to probe the order parameter
correlation function through entangling the local system qubits at
time t = t0 = 2L with two ancilla qubits separated by a distance
r − r′ and computing their mutual information at later times.

larger sizes, showing that our observables have weak finite-
size effects in stabilizer circuits, and thus seem likely to also
be well behaved for Haar-random circuits.

Models. We focus on two different models of random
circuits in a “brick-layer” geometry with local projective
measurements, as shown in Fig. 1(b). We start from a trivial
product state |�0〉 then time evolve in the presence of mea-
surements. In the following, we consider two circuit models
specified by the distribution of the gates. The local two-qubit
gates Ui,i+1 (depicted as blue rectangles) are drawn from a
Haar-random distribution for the Haar circuit model and for
the stabilizer circuit model they are sampled uniformly from
the Clifford group. We expect the behavior of the Haar model
to capture the generic behavior of systems undergoing chaotic
unitary dynamics interspersed with projective measurements.
At each space-time “site” ( j) [shown as a green circle in
Fig. 1(b)] with probability p we make a measurement of the
z component of the spin Sz

j , project onto the measured value
of Sz, and normalize the state. For the Haar simulation, we
exactly time evolve the state, while for the Clifford gates
we initialize the system in a stabilizer state and dynami-
cally update a generating set for the stabilizer group of this
state [30]. To reduce finite-size effects, we use periodic bound-
ary conditions for a system size L, unless otherwise specified.
We define one time step as one layer of gates and one layer of
measurements.

Locating the critical point. Natural diagnostics of the
transition are the bipartite Rényi entropies Sn, which saturate
to a steady state on times t ∼ L. However, these entropies
diverge logarithmically with L at the critical point. Locating
the critical point via Sn requires one to account for the
logarithm, which makes the finite-size scaling behavior less

FIG. 2. Tripartite mutual information (TMI) near the transition.
TMI near the transition for a circuit with (a) Clifford and (b) Haar
gates. Scaling collapse of the data for (c) Clifford and (d) Haar gates.

constrained. To circumvent this issue, we focus on the TMI
between regions A, B, and C as depicted in Fig. 1(c),

I3,n(A, B,C) ≡ Sn(A) + Sn(B) + Sn(C) − Sn(A ∪ B)

− Sn(A ∪ C) − Sn(B ∪ C) + Sn(A ∪ B ∪ C).

(1)

We run the circuit out to time t = 4L so that the data are solely
dependent on system size [31]. In the area-law phase, I3 is
asymptotically zero for large L because all the contributions
to it come from boundary terms, and the boundary terms
cancel out exactly in Eq. (1). In the volume-law phase, it is
negative and proportional to L, as the “bulk” contributions
from regions A, B, and C get subtracted out twice. We find
that I3 is finite and negative at the critical point. Within
the minimal cut picture (which does not strictly apply to
n > 0, but appears to qualitatively capture some aspects of the
transition) one can understand the behavior of I3 analytically
[31]. We remark that within the minimal cut picture, the
mutual information I2,n(A,C) ≡ Sn(A) + Sn(C) − Sn(A ∪ C)
should also be a constant at the critical point. Empirically,
however, I2 has large finite-size drifts at small sizes [31].

We now turn to our numerical results on general I3,n. We
find that I3,n is an O(1) system-size-independent number at
criticality for all values of n we have considered [31]. Thus,
consistent with the minimal-cut argument as well as previous
results on stabilizer circuits [13]. Our results for I3,n=1 are
shown in Fig. 2(a) for Clifford gates and Fig. 2(b) for Haar
gates at late times (t = 4L) and similar system sizes. The
TMI is negative for all p and the data for different system
sizes have a clear crossing for system sizes L = 16, 20, 24.
For stabilizer circuits this crossing yields an estimate of
pC

c = 0.154(4), close to the critical value obtained up to sizes
L = 512. For the Haar case, we estimate pH

c = 0.168(5). The
value of I3,n(pc) is L independent; for Haar gates we find
I3,n=1(pH

c ) ≈ −0.66(8) and for stabilizer circuits IC
3 (pC

c ) ≈
−0.56(9). The location of the crossings of the TMI for n > 1
[31] gives estimates of pc that agree to within error bars with
the result for n = 1.
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TABLE I. List of critical properties as a function of Rényi index
n. The column C corresponds to the n independent results for the
stabilizer circuit at small L and P to the exact results from percolation
provided to two digits of accuracy [32].

n 1 2 5 ∞ C P

pc 0.168(5) 0.162(3) 0.168(4) 0.170(4) 0.154(4) 0.5
ν 1.2(2) 1.3(1) 1.4(1) 1.4(1) 1.24(7) 1.33
η 0.19(1) 0.25(1) 0.26(1) 0.26(1) 0.22(1) 0.21
η‖ 0.39(1) 0.49(1) 0.49(2) 0.49(2) 0.63(1) 0.67
η⊥ 0.23(2) 0.31(2) 0.34(1) 0.34(1) 0.43(2) 0.44
α(n) 1.7(2) 1.2(2) 0.9(1) 0.7(1) 1.61(3) 0.55

Correlation-length exponent.— I3,n=1 at late times (t =
4L), we apply the scaling hypothesis

I3,n=1(p, L) ∼ f (L1/ν (p − pc)), (2)

where f (x) is a scaling function and ν is the correlation
length exponent. As shown in Figs. 2(c) and 2(d) we find
an excellent data collapse that yields νC = 1.24(7) and νH =
1.2(2), respectively. Our results for stabilizer circuits on small
sizes agree with results on much larger system sizes up to
L = 512. We also obtain νH for various other Rényi indices
and find that νH varies across 1.2(2) to 1.4(1) from n = 0.7 to
∞ (see Table I and Ref. [31]), suggesting that νH is constant
for all n � 1.

For n > 1 one can see that pc and ν are n independent. All
Sn (n > 1) are upper and lower bounded by S∞: S∞ � Sn �
n/(n − 1)S∞. Thus if any Sn with n > 1 scales as a volume
law, so must the others. Assuming single-parameter scaling
as in Eq. (2), νH is also independent of n: In the volume-
law phase, by assumption, Sn(L) ∼ fn(L/ξn) where fn(x) ∼
αn ln x for x � 1 and fn(x) ∼ α′

nx for x 
 1 as well as
ξn ∼ |p − pc|−νH

n . Then at very large length scales, Sn/S∞ ∼
α′

n/α
′
∞(ξ∞/ξn). This quantity cannot get parametrically large

without violating the bounds on Sn, so ξ∞/ξn must approach
a constant, so νH is n independent for n > 1. For n = 1
these bounds do not apply. One can argue that pc remains n
independent for 0 < n < 1 assuming the entanglement tran-
sition coincides with the purification transition for an ancilla
qubit (see below). For p > pc, the ancilla purifies exponen-
tially at a rate t ∼ L; its smaller Schmidt coefficient de-
creases exponentially at this rate, so all its nonzero Rényi en-
tropies vanish on timescales ∼L, yielding the same pc for all
n > 0.

The values of νH and νC are similar; indeed, within our
numerical uncertainty both are consistent with the percolation
exponent νP = 4/3. For a more thorough comparison between
stabilizer and Haar circuits we now turn to order-parameter
correlations.

Order parameter. A local bulk order parameter for the
volume-law phase can be defined as follows [26]. We run
the circuit out to a steady state, then place one of the system
spins into a Bell state with a reference qubit (an ancilla) R
at time t = t0. We continue running the unitary-projective
dynamics on the system. At t0 the state of the system and R is
|ψ0〉 = 1√

2
|A ↑〉 − |B ↓〉, where |A〉, |B〉 are orthogonal states

of the system that are locally distinguishable at t0. The order

FIG. 3. Scaling collapse of mutual information between two
ancilla qubits (inset: unscaled data). Mutual information between
ancilla entangled at r − r′ = L/2 for (a) Clifford and (b) Haar gates
with periodic boundary conditions. Mutual information between
ancilla entangled at r = 1, r′ = L for (c) Clifford and (d) Haar gates
with open boundary conditions.

parameter is then S1(ρR), where ρR is the density matrix of
R at a time (t − t0) 
 L. This behaves differently in the two
phases: In the area-law phase, measurements collapse the lo-
cal state of the system that is coupled to R, thus disentangling
R and driving the order parameter to zero. In the volume-law
phase the states A and B become indistinguishable under local
measurements, and thus remain linearly independent under
the dynamics, so the reference qubit stays entangled with the
system and the order parameter remains nonzero. Analogous
surface order parameters can be defined by entangling R
with the initial state at t0 = 0, or by using open boundary
conditions and entangling it with an end spin. The estimate of
pc obtained from order parameter dynamics agrees with that
obtained from the TMI [31].

At pc the bulk order parameter decays very slowly; to get
a cleaner numerical signal we study its two-point correlation
function, which we access by introducing two ancilla qubits,
Ã and B̃, and entangling them with circuit qubits at space-
time points (r, t0) and (r′, t0) [see Fig. 1(d)]. We define the
connected order-parameter correlation as the mutual informa-
tion between these ancillas. We fix r − r′ and determine the
time dependence of the mutual information between Ã and
B̃, denoted C(t − t0). We consider two separate geometries:
(i) periodic boundary conditions, with ancillas connected to
antipodal sites (r − r′ = L/2), and (ii) open boundary con-
ditions, with ancillas connected to spins at each edge (r −
r′ = L − 1). In both cases we start from a product state and
run the circuit out to a time t0 = 2L, introduce the ancilla
qubits, maximally entangle them, and track their mutual in-
formation. Through a conformal transformation, the scaling
dimension of case (ii) can be related to the surface exponent
η‖ [31].

Our results for C(t − t0) are shown in Fig. 3. In both the
volume-law phase, p < pc, and the area-law phase, p > pc,
C(t − t0) ∼ exp(−L/ξ ) for L 
 ξ , where ξ here is a finite
correlation length away from pc. At criticality, we numerically
estimate the dynamic exponent z = 1.06(4) [31], which is
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FIG. 4. Properties of the Rényi entropies at criticality. (a) The
Rényi entropies show a ln L dependence near the critical point
estimated by I3,n for n = 0.7, 1, 2, 3, 4, 5, ∞, with fits shown as
solid lines. (b) The coefficient of the ln L term has a strong Rényi
index dependence that is well described by a functional form a(1 +
1/n) + b.

consistent with previous work that finds z = 1 [5–7,16]. Us-
ing this, the single-parameter scaling hypothesis implies the
form

C(t − t0, L) ∼ L−ηg((t − t0)/L), (3)

where η and g(x) depend on the boundary conditions used.
As demonstrated in Fig. 3, we find excellent data collapse for
system sizes L = 12, 16, 20 for both Haar and Clifford gates,
and a summary of the exponents are given in Table I. For pe-
riodic boundary conditions we find ηC = 0.22(1) for Clifford
gates and ηH = 0.19(1) for Haar gates. Again, this result for
Clifford gates agrees with a similar analysis at much larger
L [26]. These bulk exponents are both within uncertainties
of the percolation value ηP = 5/24. To estimate the surface
critical exponent we consider open boundary conditions and
find ηH

‖ = 0.39(1) and ηC
‖ = 0.63(1), the latter of which is

consistent with results obtained in different geometries on
sizes up to L = 1024 [26] and close to the percolation value of
2/3. In stabilizer circuits, η‖ extracted from the geometry used
in Fig. 3(c) has the smallest finite-size effects, and the large
discrepancy between these values suggests that the Haar and
stabilizer circuits are in different universality classes [29]. We
have also checked whether this discrepancy persists in other
geometries that have larger finite-size effects for the stabilizer
circuits [31]. The statistical error in the collapse for these other
quantities is not high, but certain exact relations based on the
scaling hypothesis are not satisfied, so there are potentially
large systematic uncertainties in our estimate of η‖. Although
our results suggest a different exponent, we cannot rule out a
scenario in which the surface exponent is also consistent with
percolation.

Finally, the order parameter dynamics for Haar and stabi-
lizer circuits is qualitatively different. In stabilizer circuits,
the ancilla jumps from fully mixed to fully pure in a single
time step; by contrast, in the Haar case, individual realizations
purify gradually [31].

Rényi entropies. We now turn to the behavior of the Rényi
entropies, which provides a clear distinction between Haar
and stabilizer circuits. For stabilizer circuits at criticality we
find Sn(pc, L) ∼ αC ln L for all n with αC = 1.61(3) on system
sizes up to L = 24, which agrees well with a similar fit out
to much larger L [yielding 1.63(3)]. In contrast, our data for

Haar random circuits have a clear dependence on n, as shown
in Fig. 4: We find

Sn(pc, L) ∼ α(n) ln L, α(n) = 0.7(1) + 1.0(1)/n. (4)

This fit is consistent with our direct estimate of α(n = ∞) ≈
0.7. Interestingly, α(∞) is close to the percolation value
(=√

3/π ≈ 0.55 for periodic boundary conditions [33]),
while α(1) is not far from the stabilizer value.

Discussion. The critical properties obtained here are sum-
marized in Table I. With our improved estimate of pc, any
differences in the bulk critical exponents between percolation
and the Haar and stabilizer circuit transitions are within our
uncertainties. Haar and stabilizer circuits apparently differ
in the surface critical exponent η‖ and clearly differ in the
coefficients α(n) of the log divergence in the Rényi entropies
at criticality. Constraints imposed by conformal invariance
imply that a different value of the surface critical exponent
from percolation would imply that the Haar-random model
is in a separate universality class [29]. The Rényi depen-
dence fits to a form b + a(1 + 1/n), which is reminiscent
of the scaling form for unitary conformal field theories,
a(1 + 1/n) [34]; however, in the present case one needs an
offset to fit the data, so the critical wave functions at the
measurement-induced transition differ from critical ground
states. We stress that these results are beyond any current
analytic estimates, and come from being in the fully quantum
regime: The Rényi dependence is trivial in all the solvable
limits.

The overall picture that emerges from our results is that
the distinctions between the three known classes (percolation,
stabilizer circuits, and Haar-random circuits) of measurement-
induced criticality are rather subtle: The correlation length
and bulk order-parameter exponents are consistent in all
three cases to within our present error estimates. However,
the entanglement entropies at the critical points are clearly
different, and the surface-order parameter exponents appear to
differ. Understanding why these superficially distinct critical
phenomena look so similar is an important challenge for
future work.
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