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NUMERICAL METHODS

When calculating quantities such as the bipartite entanglement entropy, bipartite mutual information, or tripartite
mutual information, there is an even-odd effect that occurs depending on whether or not there is a gate across the
location of the cut. To deal with these effects we use the following prescription when calculating a quantity Q:

1. Perform a layer of gates on sites [1,2], [3,4], ...

2. Calculate quantity Q(1)

3. Perform a layer of measurements

4. Perform a layer of gates on sites [2,3], [4,5], ...

5. Calculate quantity Q(2)

6. Average results: Q = 1
2

(
Q(1) +Q(2)

)
RÉNYI INDEX N = 0

The quantities with Rényi index n = 0 are difficult to calculate numerically since all eigenvalues must be raised to
the zeroth power in the sum. One is then forced to introduce a cutoff to prevent arbitrarily small eigenvalues from
contributing to the sum. This poses significant difficulties for estimating pc from the tripartite mutual information,
I3,n=0, as shown by its sensitivity to the cutoff in Fig. S1. Choosing the cutoff to be machine epsilon for the binary64
number format, ≈ 2.22 · 10−16, the critical values are estimated to be pc = 0.45(3) and ν = 1.5(3) as shown shown in
Fig. S2. The estimated values are different than the exact values, pc = 0.5 and ν = 4/3, given by the 2-D percolation
mapping.

RÉNYI INDEX N ≥ 1

The data for the Rényi indices n & 0.1 do not suffer from the numerical accuracy issues described in the previous
section. This allows for the determination of an accurate value for the critical measurement rate, pc. The main paper
contains the results of the TMI and the data collapse from a finite size scaling analysis for n = 1. In Fig. S3, the
other Rényi’s (n = 2, 5,∞) are shown to have similar quality of data and collapse.

DATA COLLAPSE

In order to determine the critical measurement rate, pc, and the critical exponent, ν, we perform a finite size scaling
analysis based on the procedure outlined by Kawashima and Ito [1]. In summary, if we assume I3,n = F

[
(p− pc)L1/ν

]
for some arbitrary scaling function F , then we expect the data for different system sizes to collapse on each other for
the appropriate choices of pc and ν when plotting y = I3,n vs x = (p− pc)L1/ν .
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To judge the quality of collapse we study the objective function O(pc, ν) defined as,

O(pc, ν) ≡ 1

n− 2

n−1∑
i=2

w(xi, yi, di | xi−1, yi−1, di−1, xi+1, yi+1, di+1), (S1)

where xi = (pi − pc)L1/ν
i , yi = I3,n,i, and di = σyi are the scaled data sorted such that x1 < x2 < ... < xn. The

quantity w(x, y, d | x′, y′, d′, x′′, y′′, d′′) is defined as

w ≡
(

y − ȳ
∆(y − ȳ)

)2

(S2)

ȳ ≡ (x′′ − x)y′ − (x′ − x)y′′

x′′ − x′ (S3)

[∆(y − ȳ)]
2 ≡ d2 +

(
x′′ − x
x′′ − x′ d

′
)2

+

(
x′ − x
x′′ − x′ d

′′
)2

. (S4)

Minimizing Eq. S1 corresponds to minimizing the deviation of each point (xi, yi) from the line determined by its
adjacent points (xi−1, yi−1) and (xi+1, yi+1). For an ideal collapse, O(pc, ν) attains its minimum value = 1.

For a given dataset, the value of Eq. S1 can be plotted for different values of pc and ν as shown in Fig. S4. The
estimate of the critical values is given by the location of the global minimum: (p∗c , ν

∗). To estimate the error in the
values p∗c and ν∗, a region around the minimum value is taken such that O(pc, ν) ≤ 1.3 ·O(p∗c , ν

∗), shown as the white
contour. Repeating the procedure for the different Rényi indices results in the critical values shown in Fig. S5.

BIPARTITE MUTUAL INFORMATION

The bipartite mutual information, I2,n=1, between antipodal regions of size L/4 contains a crossing at pc but
suffers from stronger finite size drifts than I3,n=1 as shown in Fig. S6. This is consistent with the behavior seen in
the stabilizer circuit when compared out to larger sizes up to L = 512.

DYNAMICAL EXPONENT z

To determine the dynamical exponent, z, we construct a circuit with periodic boundary conditions starting from
an entangled Haar state such that an ancilla is maximally entangled with a qubit in the spin chain. We fix the
measurement rate p = pc = 0.17 and calculate the entanglement entropy decay of the ancilla as a function of time
as shown in Fig. S7. The entanglement entropy should scale as S(t, L) ∼ F (t/Lz) for an arbitrary scaling function
F . From data collapse of system sizes L = 12, 16, 20, we find z = 1.06(4) which is close to the value of z = 1 for
conformal invariance [2, 3].

ORDER PARAMETER

An order parameter can be defined for the transition by introducing a reference qubit that is maximally entangled
with a single site in the system and calculating its entanglement entropy. In Fig. S8 a crossing at similar values of
pc is observed for the Rényi indices (a) n = 0.3 and (b) n = 1 indicating that all n > 0 are described by the same
transition.

CORRELATION FUNCTION

The correlation function C(t− t0) = I1(Ã, B̃) = S1(Ã) + S1(B̃)− S1(Ã ∪ B̃) is defined as the mutual information
between two ancilla qubits entangled with the system at time t0. The correlation function obeys the critical finite-size
scaling form C(t− t0) ∼ L−ηg((t− t0)/L), where the exponent η depends on the different boundary conditions.

In the case of our numerical simulations we define the bulk exponent η from the circuit with periodic boundary
conditions starting from a product state. The circuit is run to a time t0 = 2L and the ancillas are maximally
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entangled with antipodal spins. This corresponds to a two-point order parameter correlation function on a cylinder
with complex coordinates for the two ancilla (z′1, z

′
2) = (0, iL/2), which can be related to standard correlation functions

in the complex plane through the conformal mapping z = e2πz
′/L.

In Fig. S9, we show how the surface exponents are related to different correlation functions in the random circuit
geometry with open boundary conditions. Here, φA/B/C(b) denotes the order parameter operator at scale b. The
scaling dimension in the bulk is η/2, the scaling dimension at the surface is η‖/2, and the scaling dimension for
two-point functions between the surface and bulk is given by η⊥ that satisfies the scaling relation 2η⊥ = η+ η‖ [4, 5].
In the random circuit geometry, the surface exponent η‖ is given by a circuit with open boundary conditions starting
from a product state. The circuit is run to a time t0 = 2L and the ancillas are maximally entangled with the edge
spins so that (z′1, z

′
2) = (0, iL). Another estimate of η‖ is given by a circuit with periodic boundary conditions starting

from a product state where at time t0 = 0 an ancilla is maximally entangled with a spin in the system. The latter
has non-universal early time dynamics that make it difficult extract η‖. The surface exponent η⊥ is given by a circuit
with open boundary conditions starting from a product state. The circuit is run to a time t0 = 2L and the ancillas
are maximally entangled with the edge and middle spins so that (z′1, z

′
2) = (0, iL/2).

The main text contains results for η and η‖ for the Rényi index n = 1. For an arbitrary value of the Rényi index

we can define the correlation function as Cn(t− t0) = In(Ã, B̃) = Sn(Ã) + Sn(B̃)− Sn(Ã∪ B̃). In Figs. S10 and S11
the other Rényi’s (n = 2, 5,∞) are shown to have similar quality of data and collapse. In Fig. S12 we show results
for the alternate estimate of η‖ where we find values different than those reported in the main text, however, we find
the values from the main text hold reasonably well at late times where the dynamics are expected to be universal.
Fig. S13 also shows results for η⊥ for n = 1, 2,∞.

ORDER PARAMETER DYNAMICS

In Fig. S14, we show the dynamics of the order parameter S1
Q for the case of the Clifford and Haar gate models

at their respective critical measurement rates for L = 12. Here, S1
Q is the entropy of the reference qubit averaged

over measurement outcomes (trajectories) for a fixed realization of the circuit and measurement locations. The initial
state was chosen to be a pseudo-random stabilizer/Haar random state of the system and reference. The pseudo-
random stabilizer state was generated by running a depth 2L circuit without measurements on an initial product
stabilizer state. In the case of the stabilizer circuits, the purification of the reference qubit happens instantaneously in
a single measurement. The universal decay curve with time only arises after averaging over random choices of gates
or measurement locations. For the Haar random circuit, in contrast, the randomness in the measurement outcomes
is sufficient to lead to a nontrivial decay for the order parameter. This is an important qualitative distinction in the
critical dynamics between these two models. In the case of the stabilizer circuit, the order parameter dynamics are
not self-averaging even in the thermodynamic limit, whereas the intrinsic randomness of the measurement outcomes
is enough to lead to (at least partial) self-averaging behavior for the Haar model.

Another interesting observation is that S1
Q is monotonically decreasing with time in both cases. Using the relation

between S1
Q and the mutual information between the reference qubit and an effective environment associated with

the measurement outcomes [6–8], such a monotonic decay implies that, for these circuits, the information about the
state of the reference qubit flows irreversibly into the environment. This trend is consistent with the fact that the
unitary-projective measurement dynamics effectively samples the quantum trajectories of a system interacting with
a perfect Markovian environment.

MINIMAL-CUT PICTURE FOR MUTUAL INFORMATION

In this section we briefly discuss the behavior of the bipartite and tripartite mutual information, I2,n and I3,n,
within the minimal cut picture. For Haar-random circuits, the minimal cut picture is exact for n = 0, regardless of
the local Hilbert-space dimension; within the minimal cut, the entanglement transition is a percolation transition.
We will restrict our discussion to partitions of a system of size L, with periodic boundary conditions, into four equally
sized pieces (each of length L/4) labeled A,B,C,D as in Fig. S15. Specifically, we will consider I2,0(A : C) and
I3,0(A : B : C); for simplicity, in what follows we will suppress the indices and just call these quantities I2 and I3.
Although our discussion is quantitative only for this specific choice of observable, we have found that the generic and
percolation transitions are qualitatively similar, so our analysis offers useful guidance for the general case.

We begin with I2 = S(A) + S(C)− S(A∪C); we assume the circuit has been run out to times considerably longer
than system size. The entanglement of A is given by the minimal number of bonds that must be crossed by a polymer
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beginning and ending at endpoints of A. For the disjoint region A ∪ C, one has two ways to connect the polymers
(Fig. S15a), A1A2, C1C2 and A2C1, C2A1; the minimal cut is the shorter of these. In the absence of measurements,
the two arrangements cut the same number of bonds, so I2 = 0. Measurements locally cut bonds; thus, for nonzero
measurement probability, in a given realization of the circuit, the two minimal-cut arrangements pass through different
numbers of cut bonds. In half the realizations, the minimal cut for A ∪ C is the union of those for A and C, and
I2 = 0; in the other half, there is nonzero I2. Following a standard analysis of polymers in random media [9] we
find that the typical scale of fluctuations between the two minimal cuts, and therefore the mutual information in the
volume law phase, scales as ∼ L1/3. This latter prediction is consistent with the data on Haar circuits (Fig. S16);
moreover, the minimal-cut prediction that some nonvanishing fraction of the samples have zero mutual information
in the thermodynamic limit is consistent with the data on stabilizer circuits in the volume law phase, as shown in
Fig. S17 (by contrast, the distribution for Haar circuits is continuous, but at the achievable sizes we cannot conclude
whether there is a distinct peak near zero mutual information). Thus the minimal cut picture appears to qualitatively
describe many features of the mutual information beyond the n = 0 limit.

In the area law phase, there is a percolating cluster of bonds that are cut because of measurements. The polymer
from each end of A travels some distance into the circuit, finds the cluster of cut bonds (which we can regard as a
large “void” [10]), and moves freely through it to join up with the polymer from the other end. The entanglement is
set by the local geometry of getting from (say) A1 to the void (the “boundary” sections in Fig. S15b). In the area law
phase there is no contribution from the “bulk” of the region and thus no distinction between the two ways of closing
the minimal cut; the mutual information is thus zero, except in instances that are exponentially rare in the region
size.

The behavior at the critical point is intermediate. The polymer goes through a hierarchy of voids, each of which
is larger than the previous one by some factor; to travel a distance L, therefore, requires crossing ∼ logL bonds [10].
To get from A1 to A2 (or C2), the polymer first makes it out of A1 into a void of size ∼ L, crosses that void, and
then goes through increasingly small voids until it reaches A2 (or C2). Crucially, the optimal path to the large void
is the same regardless of which way one closes the minimal cut. Therefore, the differences between the two different
minimal cuts come only from the largest few scales, and are thus O(1); thus I2 at the critical point is expected to be
constant.

We now turn to I3, for which the analysis is similar but more involved. As noted before, we expect the local behavior
near the cuts to be the same regardless of how the cuts will eventually line up; therefore we can schematically split up
our entanglement cuts into “bulk” and “boundary” segments as in Fig. S15b. In I3, the boundary segments cancel
out, leading to the formula (expressed in the notation of that figure):

I3 = min(a, b+ c+ d) + min(b, a+ c+ d) + min(c, a+ b+ d)

−{min(a+ b, c+ d) + min(a+ c, b+ d) + min(a+ d, b+ c)}. (S5)

In the volume law phase, a, b, c, d are all comparable and volume-law in magnitude, so I3 ≈ −2a is negative and
volume-law. In the area law phase, by contrast, all four numbers are essentially zero (since the polymer can move
through a void), so I3 = 0 (since the boundary contributions cancel exactly). At the critical point, the “bulk”
contribution is O(1), as argued above, so I3 is also O(1).

One can see that this expression (S5) is never positive. Without loss of generality take a ≥ b ≥ c ≥ d. The
expression then simplifies to I3 = min(a, b+ c+ d)−min(a+ d, b+ c)− d. There are two cases: (i) b+ c ≥ a+ d, in
which case I3 = a− (a+d)−d = −2d ≤ 0; and (ii) a+d > b+ c, in which case I3 = min(a, b+ c+d)− (b+ c+d) ≤ 0.
This establishes that I3 ≤ 0 within the minimal cut picture; together with our previous argument that it should be
O(1) in magnitude, we conclude that I3 should be a negative number of order unity at the transition. This appears
to be the case not just for percolation, as derived above, but also for Haar and stabilizer circuits.
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SUPPLEMENTAL FIGURES
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FIG. S1. Sensitivity to cutoff. The Rényi index n = 0 raises all eigenvalues to the zeroth power and it is necessary to introduce
a cutoff to prevent arbitrarily small eigenvalues from contributing to the sum. For a fixed set of system sizes, the crossing in
I3,n=0 drifts towards a larger pc as the cutoff is increased. This leads to large errors when estimating pc and ν.
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FIG. S2. Rényi index n = 0 tripartite mutual information. The (a) tripartite mutual information and (b) data collapse for a
cutoff given by machine epsilon for the binary64 number format. The estimated values of pc and ν are slightly different than
the exact value given by the 2-D percolation mapping.
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FIG. S3. Tripartite mutual information near the transition. The crossing of I3 for Rényi indices n = 2, 5, and∞ is shown in
(a), (c), and (e), respectively. The corresponding data collapse using the critical values determined from the finite size scaling
analysis is shown in (b), (d), and (f).
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FIG. S4. Color plot of the objective function O(pc, ν). The critical values are determined from the global minimum of the
objective function O(pc, ν). To estimate the error bars in the critical values we take a region (outlined in white) around the
minimum value of the objective function such that O(pc, ν) < 1.3 ·O(p∗c , ν

∗).
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FIG. S5. Rényi index dependence of the critical values. The critical values pc and ν obtained from the global minimum of the
objective function O(pc, ν). The unlabeled data point corresponds to n→∞.
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FIG. S6. Mutual information crossing. By studying the stabilizer circuit, (a), we find the bipartite mutual information between
antipodal regions of size L/4 contains a crossing at pc that drifts heavily for small system sizes. The Haar circuit shows similar
finite size drifts in the bipartite mutual information, (b) and (c), that are absent in the (d) tripartite mutual information.
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FIG. S7. Dynamical exponent. (a) The entanglement entropy decay as a function of time for an ancilla maximally entangled
with a qubit in the circuit at p = pc. (b) Through data collapse of the entanglement entropy we find the dynamical exponent
z = 1.06(4) which is close to the value of z = 1 for conformal invariance.
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FIG. S8. Order parameter. The entanglement entropy of the reference qubit behaves as an order parameter for the transition.
A crossing at similar pc is observed for the Rényi indices (a) n = 0.3 and (b) n = 1 indicating that all n > 0 are described by
the same transition.

z0 =
L

π
ln z
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<latexit sha1_base64="7EwojGiRYQhp3TMtUXGFRdbQHSw=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokKeiz24rGK/YA2lM120y7dbMLuRCih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4JRbeq3nrg2IlaPOE64H9GBEqFgFK30UDvrlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURV8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y6miETd+Nrt0Qk6t0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhjZ8JlaTIFZsvClNJMCbTt0lfaM5Qji2hTAt7K2FDqilDG07RhuAtvrxMmhcV77Li3V+Vq7d5HAU4hhM4Bw+uoQp3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB/ckjPs=</latexit>

0
<latexit sha1_base64="tfOYbzHe3MwbA2Mcw6BoAsW92PQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUcPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreZdVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBehWMtw==</latexit>iL

<latexit sha1_base64="RRPOAXGtYWerWUQkp5ZCFNRfNEo=">AAAB6XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5U0DJoY2ERxXxAcoS9zV6yZG/v2J0TwpF/YGOhiK3/yM5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6o4VIo3kCBkrcTzWkUSN4KRjdTv/XEtRGxesRxwv2IDpQIBaNopQdx1ytX3Ko7A1kmXk4qkKPeK391+zFLI66QSWpMx3MT9DOqUTDJJ6VuanhC2YgOeMdSRSNu/Gx26YScWKVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpm+TvtCcoRxbQpkW9lbChlRThjackg3BW3x5mTTPqt551bu/qNSu8ziKcATHcAoeXEINbqEODWAQwjO8wpszcl6cd+dj3lpw8plD+APn8wdpBY1G</latexit>

iL/2
<latexit sha1_base64="uyLZXJ4Hnh6ohogd+HPwdVaruIg=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe8SQcugjYVFBPMByRH2NnvJkt29Y3dPCEf+go2FIrb+ITv/jXvJFZr4YODx3gwz84KYM21c99sprK1vbG4Vt0s7u3v7B+XDo7aOEkVoi0Q8Ut0Aa8qZpC3DDKfdWFEsAk47weQ28ztPVGkWyUczjakv8EiykBFsMondX9QG5YpbdedAq8TLSQVyNAflr/4wIomg0hCOte55bmz8FCvDCKezUj/RNMZkgke0Z6nEgmo/nd86Q2dWGaIwUrakQXP190SKhdZTEdhOgc1YL3uZ+J/XS0x47adMxomhkiwWhQlHJkLZ42jIFCWGTy3BRDF7KyJjrDAxNp6SDcFbfnmVtGtVr171Hi4rjZs8jiKcwCmcgwdX0IA7aEILCIzhGV7hzRHOi/PufCxaC04+cwx/4Hz+AEd/jbs=</latexit>

L
<latexit sha1_base64="HEZo7DV/BnCpHW4qzk5Zrdo+zWo=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhCswp0KWgZtLCwSMB+QHGFvM5es2ds7dveEcOQX2FgoYutPsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/lgxkn6Ed0IHnIGTVWqt/3SmW34s5AlomXkzLkqPVKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZodOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymX5M+V8iMGFtCmeL2VsKGVFFmbDZFG4K3+PIyaZ5XvIuKV78sV2/yOApwDCdwBh5cQRXuoAYNYIDwDK/w5jw6L8678zFvXXHymSP4A+fzB6SFjNM=</latexit>
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Standard surface geometry

A
<latexit sha1_base64="oOqKmBV0GOZmzyuHLWA05JzLfro=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeqx68diC/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVb3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveRcWrX5art3kcBTiGEzgDD66gCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDk9mMyA==</latexit>

B
<latexit sha1_base64="+cAit/nz4lmAwJALJL/TA0Uyd7I=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeiz14rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVrXJertTyOApzCGVyABzdQhXuoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBlV2MyQ==</latexit>

C
<latexit sha1_base64="ZUDPe0yTEoj3Bde10TZDRGVCwLw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeiz24rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WBcm/ntJ1Sax/LBTBL0IzqUPOSMGis1av1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjrZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTdGG4C2/vEpalxXvquI1rsvVuzyOApzCGVyABzdQhXuoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBluGMyg==</latexit>

1
<latexit sha1_base64="FPBIvK44hjehgr3A3+ZW3N9yfas=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreZdVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBe5mMuA==</latexit>

−1
<latexit sha1_base64="+dQ1rBH28LF/MZ8hMDjg6WJNOXw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBiyVRQY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1Fjp4czrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyvehdV7/6yUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPH+TejO8=</latexit>

i
<latexit sha1_base64="Y3uuVtudDXjFOsVR6Bxh0mOGroU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU4P1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvsuo1riq12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A0HmM8A==</latexit>

Conformal transformation Random circuit geometry

φC(b) ∼ b−η/2
<latexit sha1_base64="6vjBnBoA76bpMeMil9ZdT4kCD0k=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBahLqxJFXRZ7MZlBfuAJobJdNIOnUnCzEQoIRs3/oobF4q49R/c+TdO2yy09cCFwzn3cu89fsyoVJb1bRSWlldW14rrpY3Nre0dc3evLaNEYNLCEYtE10eSMBqSlqKKkW4sCOI+Ix1/1Jj4nQciJI3COzWOicvRIKQBxUhpyTMPnXhIvbSRVfwT6EjKoX+fnjpEobNa5pllq2pNAReJnZMyyNH0zC+nH+GEk1BhhqTs2Vas3BQJRTEjWclJJIkRHqEB6WkaIk6km06/yOCxVvowiISuUMGp+nsiRVzKMfd1J0dqKOe9ifif10tUcOWmNIwTRUI8WxQkDKoITiKBfSoIVmysCcKC6lshHiKBsNLBlXQI9vzLi6Rdq9rnVfv2oly/zuMoggNwBCrABpegDm5AE7QABo/gGbyCN+PJeDHejY9Za8HIZ/bBHxifP78Pl3E=</latexit>

φA/B(b) ∼ b−ηk/2
<latexit sha1_base64="+tkINVrSNnB/G44yVzXJRC0XUGo=">AAACEXicbVC7SgNBFJ31GeMramkzGIRYmOxGQcsYG8sI5gHZdZmd3E2GzD6YmRXCsr9g46/YWChia2fn3zh5FJp44MLhnHu59x4v5kwq0/w2lpZXVtfWcxv5za3tnd3C3n5LRomg0KQRj0THIxI4C6GpmOLQiQWQwOPQ9obXY7/9AEKyKLxToxicgPRD5jNKlJbcQsmOB8xNryr1rOSdYFuyAHv36akNirh2TAThHHilmrmFolk2J8CLxJqRIpqh4Ra+7F5EkwBCRTmRsmuZsXJSIhSjHLK8nUiICR2SPnQ1DUkA0kknH2X4WCs97EdCV6jwRP09kZJAylHg6c6AqIGc98bif143Uf6lk7IwThSEdLrITzhWER7Hg3tMAFV8pAmhgulbMR3oFKjSIeZ1CNb8y4ukVS1bZ2Xr9rxYq8/iyKFDdIRKyEIXqIZuUAM1EUWP6Bm9ojfjyXgx3o2PaeuSMZs5QH9gfP4AzBicYA==</latexit>

2η? = η + ηk
<latexit sha1_base64="LQwZkf8GWknObZz7029GXSYPv5Y=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q4sgCCWpgm6EohuXFewDmhAm05t26OTBzEQooXs3/oobF4q49Qfc+TdO0yy09cCFM+fcy9x7/IQzqSzr2yitrK6tb5Q3K1vbO7t75v5BR8apoNCmMY9FzycSOIugrZji0EsEkNDn0PXHNzO/+wBCsji6V5ME3JAMIxYwSpSWPLPawA4o4jkJiARf5Y/TQiGCcA7cM2tW3cqBl4ldkBoq0PLML2cQ0zSESFFOpOzbVqLcjAjFKIdpxUklJISOyRD6mkYkBOlm+S1TfKyVAQ5ioStSOFd/T2QklHIS+rozJGokF72Z+J/XT1Vw6WYsSlIFEZ1/FKQcqxjPgsEDJoAqPtGEUMH0rpiOdARU6fgqOgR78eRl0mnU7bO6fXdea14XcZTREaqiE2SjC9REt6iF2oiiR/SMXtGb8WS8GO/Gx7y1ZBQzh+gPjM8fsx6aOA==</latexit>

φB(b)φC(b) ∼ b−η⊥
<latexit sha1_base64="iKfmeWCawSRB07fd+bBQY2MNVpA=">AAACEnicbZC7SgNBFIZn4y3GW9TSZjAIsTDsqqBlSBrLCOYC2XWZnZwkQ2Z3h5lZISx5BhtfxcZCEVsrO9/GSbKFJv4w8PGfczhz/kBwprRtf1u5ldW19Y38ZmFre2d3r7h/0FJxIik0acxj2QmIAs4iaGqmOXSEBBIGHNrBqD6ttx9AKhZHd3oswAvJIGJ9Rok2ll88dcWQ+WltUg7mWDeAXcVCHNynZy5o4rsCpJj4xZJdsWfCy+BkUEKZGn7xy+3FNAkh0pQTpbqOLbSXEqkZ5TApuIkCQeiIDKBrMCIhKC+dnTTBJ8bp4X4szYs0nrm/J1ISKjUOA9MZEj1Ui7Wp+V+tm+j+tZeySCQaIjpf1E841jGe5oN7TALVfGyAUMnMXzEdEkmoNikWTAjO4snL0DqvOBcV5/ayVK1lceTRETpGZeSgK1RFN6iBmoiiR/SMXtGb9WS9WO/Wx7w1Z2Uzh+iPrM8f1HGc9Q==</latexit>

FIG. S9. Surface exponent definition. The standard surface geometry for defining surface exponents in a 2D system [4, 5] can
be related to the geometries we consider in the random circuit through the conformal transformation z′ = (L/π) ln z. Here,
φA/B/C(b) denotes the order parameter operator at scale b.

(a) (b) (c)

FIG. S10. Bulk exponent η. The bulk η is given by a circuit with periodic boundary conditions starting from a product state.
The circuit is run to a time t0 = 2L and the ancillas are maximally entangled with antipodal spins.



S11

(a) (b) (c)

FIG. S11. Surface exponent η‖. The surface η‖ is given by a circuit with open boundary conditions starting from a product
state. The circuit is run to a time t0 = 2L and the ancillas are maximally entangled with the edge spins.
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FIG. S12. Surface exponent η‖. The surface η‖ is also given by a circuit with periodic boundary conditions starting from a
product state where at time t0 = 0 an ancilla is placed in a maximally entangled state with a spin in the system. The collapse
of the data for different Rényi indices n = 1, 2, and ∞ is shown in (a), (b), and (c), respectively. These results for η‖ are
different than the estimate used in the main text due to non-universal early time dynamics. However, at late times, the data
collapses using the values of η‖ from the main text, as shown in (d), (e), and (f).
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(a) (b) (c)

FIG. S13. Surface exponent η⊥. The surface η⊥ is given by a circuit with open boundary conditions starting from a product
state. The circuit is run to a time t0 = 2L and the ancillas are maximally entangled with the edge and middle spins.
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<latexit sha1_base64="YbRK9qpW6HMRbU6qqXzQmlQfri0=">AAAB6HicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2J0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzfz2E2gjYvWAkwT8iA2VCAVnaKUG9ssVt+rOQVeJl5MKyVHvl796g5inESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/mhU3pmlQENY21LIZ2rvycyFhkziQLbGTEcmWVvJv7ndVMMb/xMqCRFUHyxKEwlxZjOvqYDoYGjnFjCuBb2VspHTDOONpuSDcFbfnmVtC6q3mXVa1xVard5HEVyQk7JOfHINamRe1InTcIJkGfySt6cR+fFeXc+Fq0FJ585Jn/gfP4A4SWM+w==</latexit>
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<latexit sha1_base64="jFBcG3yN2RMAU05MduuigNtkeQM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BItQLyVRQY9FLx5btB/YxrLZbtqlm03YnQgl9F948aCIV/+NN/+N2zYHbX0w8Hhvhpl5fiy4Rsf5tnIrq2vrG/nNwtb2zu5ecf+gqaNEUdagkYhU2yeaCS5ZAzkK1o4VI6EvWMsf3Uz91hNTmkfyHscx80IykDzglKCRHu569cfUnZTxtFcsORVnBnuZuBkpQYZar/jV7Uc0CZlEKojWHdeJ0UuJQk4FmxS6iWYxoSMyYB1DJQmZ9tLZxRP7xCh9O4iUKYn2TP09kZJQ63Hom86Q4FAvelPxP6+TYHDlpVzGCTJJ54uCRNgY2dP37T5XjKIYG0Ko4uZWmw6JIhRNSAUTgrv48jJpnlXc84pbvyhVr7M48nAEx1AGFy6hCrdQgwZQkPAMr/BmaevFerc+5q05K5s5hD+wPn8AkWuQMA==</latexit> S
1 Q
(t
)

<latexit sha1_base64="jFBcG3yN2RMAU05MduuigNtkeQM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BItQLyVRQY9FLx5btB/YxrLZbtqlm03YnQgl9F948aCIV/+NN/+N2zYHbX0w8Hhvhpl5fiy4Rsf5tnIrq2vrG/nNwtb2zu5ecf+gqaNEUdagkYhU2yeaCS5ZAzkK1o4VI6EvWMsf3Uz91hNTmkfyHscx80IykDzglKCRHu569cfUnZTxtFcsORVnBnuZuBkpQYZar/jV7Uc0CZlEKojWHdeJ0UuJQk4FmxS6iWYxoSMyYB1DJQmZ9tLZxRP7xCh9O4iUKYn2TP09kZJQ63Hom86Q4FAvelPxP6+TYHDlpVzGCTJJ54uCRNgY2dP37T5XjKIYG0Ko4uZWmw6JIhRNSAUTgrv48jJpnlXc84pbvyhVr7M48nAEx1AGFy6hCrdQgwZQkPAMr/BmaevFerc+5q05K5s5hD+wPn8AkWuQMA==</latexit>

t
<latexit sha1_base64="YbRK9qpW6HMRbU6qqXzQmlQfri0=">AAAB6HicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2J0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzfz2E2gjYvWAkwT8iA2VCAVnaKUG9ssVt+rOQVeJl5MKyVHvl796g5inESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/mhU3pmlQENY21LIZ2rvycyFhkziQLbGTEcmWVvJv7ndVMMb/xMqCRFUHyxKEwlxZjOvqYDoYGjnFjCuBb2VspHTDOONpuSDcFbfnmVtC6q3mXVa1xVard5HEVyQk7JOfHINamRe1InTcIJkGfySt6cR+fFeXc+Fq0FJ585Jn/gfP4A4SWM+w==</latexit>

FIG. S14. Order parameter dynamics. For fixed gates and measurement locations we average the entropy of a single reference
qubit over measurement outcomes to determine the order parameter S1

Q(t) for this circuit [6]. We took an initial state consisting
of a pseudo-random stabilizer state/Haar random state between the reference and system in the case of Clifford/Haar gates.
(a) Dynamics of S1

Q(t) for five different realizations of the stabilizer circuit at p = pCc . The purification of the reference occurs

in a single time step at a time that depends on the choice of circuit. (b) Dynamics of S1
Q(t) for five different realizations of

the Haar random circuit at p = pHc . In sharp contrast to the stabilizer circuits, the purification occurs gradually over many
measurements. We took L = 12 in both panels and each curve in (b) is averaged over 10 000 trajectories. No such averaging
is required in (a) because S1

Q is independent of the measurement outcomes for stabilizer circuits.
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FIG. S15. Minimal cut. Minimal cut diagrams for partitions of a system into four equal segments. (a) Schematic minimal cut
diagrams for the bipartite mutual information I2,0(A : C). For the region A(C), one requires the optimal path from A1 to A2

(C1 to C2), shown in the upper figure. However, for the region A ∪ C one only needs paths with endpoints at A1, A2, C1, C2;
there are two of these, shown in the upper and lower figures. When the lower cut determines S0(A∪C), the mutual information
is nonzero. (b) Diagram for computing the tripartite mutual information I3. It is convenient to separate the minimal cuts
into “boundary” parts (denoted by light orange lines) and “bulk” parts (denoted by dark red lines). In I3 the boundary parts
cancel but the bulk parts do not.
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FIG. S16. Mutual information scaling. The mutual information in the volume-law phase for the stabilizer circuits scales as
L1/3 as expected from the minimal cut picture.



S14

0 50 100 150

L

0

0.1

0.2

0.3

0.4

0.5

P
ro

b
. 

I(
A

B
:C

D
) 

=
 n

 b
it

s

Pure Initial State, (A,B,C,D)=(1,L/4,L/2,3L/4)

10 bits

1 bits

0 bits

P
(I

C 2
=

n
b
it
s)

<latexit sha1_base64="ZkqE4g3f74B7LnpDB0Sj7ZLwfck=">AAACDXicbVC7SgNBFJ2NrxhfUUubwSjEJuxGQRshmEa7COYB2RhmJ5NkyOzsMnNXDMv6ATb+io2FIrb2dv6Nk0ehiQcuHM65l3vv8ULBNdj2t5VaWFxaXkmvZtbWNza3sts7NR1EirIqDUSgGh7RTHDJqsBBsEaoGPE9wereoDzy63dMaR7IGxiGrOWTnuRdTgkYqZ09qORdn0CfEhFfJe3ibRmfY/ngArsH5cceB50ctbM5u2CPgeeJMyU5NEWlnf1yOwGNfCaBCqJ107FDaMVEAaeCJRk30iwkdEB6rGmoJD7TrXj8TYIPjdLB3UCZkoDH6u+JmPhaD33PdI4u17PeSPzPa0bQPWvFXIYRMEkni7qRwBDgUTS4wxWjIIaGEKq4uRXTPlGEggkwY0JwZl+eJ7ViwTkuONcnudLFNI402kP7KI8cdIpK6BJVUBVR9Iie0St6s56sF+vd+pi0pqzpzC76A+vzB+ACm3M=</latexit>

L
<latexit sha1_base64="HEZo7DV/BnCpHW4qzk5Zrdo+zWo=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhCswp0KWgZtLCwSMB+QHGFvM5es2ds7dveEcOQX2FgoYutPsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/lgxkn6Ed0IHnIGTVWqt/3SmW34s5AlomXkzLkqPVKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZodOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymX5M+V8iMGFtCmeL2VsKGVFFmbDZFG4K3+PIyaZ5XvIuKV78sV2/yOApwDCdwBh5cQRXuoAYNYIDwDK/w5jw6L8678zFvXXHymSP4A+fzB6SFjNM=</latexit>

(a)

0 1 2 3
0.0

0.3

0.6

0.9

1.2
L = 12

L = 16

L = 20

L = 24

(b)

0 1 2 3
0.0

0.5

1.0

1.5 L = 12

L = 16

L = 20

L = 24

(c)

FIG. S17. Mutual information probability distributions. (a) Stabilizer circuits at p = 0.08, i.e., deep in the volume-law phase.
Although I2 grows with system size, L, the probability of finding zero mutual information appears to approach a constant,
as the minimal cut picture would predict. (b),(c): analogous data for Haar circuits. Unlike the stabilizer case, here I2 is
continuously distributed.
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